A Lattice on Dyck Paths Close to the Tamari Lattice

LambdaComb days, 22-24 January 2024
arxiv.org/abs/2309.00426

Jean-Luc Baril ${ }^{1}$ Sergey Kirgizov ${ }^{1}$ Mehdi Naima ${ }^{2}$
24 janvier 2024
${ }^{1}$ Université de Bourgogne, LIB, Dijon, France
${ }^{2}$ Sorbonne Université, CNRS, LIP6, Paris, France

Introduction

A partial order, is a binary relation \leq on a set P such that for all $a, b, c \in P$

- $a \leq a$ (reflexivity)
- $a \leq b$ and $b \leq a \Longrightarrow a=b$ (antisymmetry)
- $a \leq b$ and $b \leq c \Longrightarrow a \leq c$ (transitivity)

set of all subsets of 3 elements ordered by inclusion

Let (P, \leq) be a partially ordered set. Let $x, y, m \in P$, then m is called the Meet
(greatest lower bound or infinimum)
$m=x \wedge y$ if:

- $m \leq x$ and $m \leq y$
- For any $w \in P$, with $w \leq x$ and $w \leq y$ then $w \leq m$
- Dually a Join (Smallest upper bound or supremum) $m=x \vee y$
- If a meet (resp. join) exists then it is unique

Meets do not always exist (for example $d, e)$

A partially ordered set (L, \leq), is a lattice if $\forall a, b \in L$

- a, b have a infimum ($a \wedge b$ exists)
- a, b have an supremum ($a \vee b$ exists)

set of all subsets is a lattice

Tamari Lattice

- The Tamari Lattice is a poset introduced by Dov Tamari in 1962
- The Poset has equivalent definitions on bracketed expressions, binary trees, Dyck paths and triangulations
- Many connections with triangulations, combinatorial maps, lambda calculus,

If we denote by \mathcal{T}_{n} the set of bracketed expressions with n atoms.

Definition

The Tamari poset by endowing \mathcal{T}_{n} with the transitive closure \preceq of the covering relation $A(B C) \longrightarrow(A B) C$ (shifting a parenthesis to the left)

Dyck Paths

A Dyck path is a lattice path in \mathbb{N}^{2} starting at the origin, ending on the x-axis and consisting of up steps $U=(1,1)$ and down steps $D=(1,-1)$.

Catalan numbers

Let \mathcal{D}_{n} be the set of Dyck paths of semilength n, then :

$$
\left|\mathcal{D}_{n}\right|=(2 n)!/(n!(n+1)!)
$$

$$
\mathcal{D}=\bigcup_{n \geq 0} \mathcal{D}_{n}
$$

- first/last return decomposition of a non-empty Dyck path is unique, $P=U R D S$, where $R, S \in \mathcal{D}$
- A Dyck path is prime whenever it only touches the x-axis at its beginning and its end

Tamari Lattice

Defined by endowing \mathcal{D}_{n} with the transitive closure \preceq of the covering relation transforming an occurrence of DUQD into an occurrence UQDD where $Q \in \mathcal{D}$.

BKN Poset

BKN poset

Defined by endowing \mathcal{D}_{n} with the transitive closure \leq of the covering relation transforming an occurrence of $D U^{k} D^{k}$ into an occurrence $U^{k} D^{k} D$ with $k \geq 1$.

The red arrow does not belong to BKN

Unicity of maximum and minimum element

Lemma

For $n \geq 2$, any Dyck path $P \in \mathcal{D}_{n}, P \neq U^{n} D^{n}$, contains at least one occurrence of $D U^{k} D^{k}$ for some $k \geq 1$.
\exists an occurrence of $D U$, and the rightmost occurrence of $D U$ always starts an occurrence of $D \cup U^{\ell} D^{\ell} D, \ell \geq 0$.

Lemma

For $n \geq 2$, any Dyck path $P \in \mathcal{D}_{n}, P \neq(U D)^{n}$, contains at least one occurrence of $U^{k} D^{k} D$ for some $k \geq 1$, and then P contains at least one occurrence of UDD.

By contradiction, assume P does not contain occurrence UDD. Then any peak UD is either at the end of P, or it precedes an up step U, implying that a down step cannot be contiguous to another down step. Thus, $P=(U D)^{n}$ contradicting $P \neq(U D)^{n}$.

Propositions:

1. The poset $\left(\mathcal{D}_{n}, \leq\right)$ admits a maximum element and a minimum element.
2. Given $P, Q \in \mathcal{D}_{n}$ satisfying $P \leq Q, P \neq Q$, such that $P=R D S$ and $Q=R \cup S^{\prime}$ (R is the maximal common prefix). Let W the Dyck path obtained from P by applying the covering $P \longrightarrow W$ on the leftmost occurrence of $D U^{k} D^{k}, k \geq 1$, in $D S$, then we necessarily have $W \leq Q$.

Theorem

The poset $\left(\mathcal{D}_{n}, \leq\right)$ is a lattice
Existence of a join element. By induction on the semilength of the Dyck paths.
For $n \leq 3$ the poset is isomorphic to the Tamari lattice.

Theorem

The poset $\left(\mathcal{D}_{n}, \leq\right)$ is a lattice
Existence of a join element. By induction on the semilength of the Dyck paths. Assume $\mathcal{S}_{n}=\left(\mathcal{D}_{n}, \leq\right)$ is a lattice for $n \leq N$, and show for $N+1$. Distinguish according to first return decomposition

Theorem

The poset $\left(\mathcal{D}_{n}, \leq\right)$ is a lattice
Existence of a join element. By induction on the semilength of the Dyck paths.
(1) If $P=U R D S$ and $Q=U R^{\prime} D S^{\prime}$ where $|R|=\left|R^{\prime}\right|$. Apply the recurrence hypothesis for R and R^{\prime} (resp. S and S^{\prime}), which means that $R \vee R^{\prime}$ (resp., $S \vee S^{\prime}$) exists. Then, the path $U\left(R \vee R^{\prime}\right) D\left(S \vee S^{\prime}\right)$ is necessarily the least upper bound of P and Q, proving existence of $P \vee Q$.

Lattice structure of BKN

Theorem

The poset $\left(\mathcal{D}_{n}, \leq\right)$ is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.
(2) Let us suppose that $P=U R D S$ and $Q=U R^{\prime} D S^{\prime}$ where $\left|R^{\prime}\right|<|R|$. Let M be an upper bound of P and Q (Prop 1). Since $\left|R^{\prime}\right|<|R|, M$ has necessarily a decomposition $M=U M_{1} D M_{2}$ where $\left|M_{1}\right| \geq|R|$. In any sequence of coverings $Q \rightarrow \ldots \rightarrow M$
from Q to M, there is necessarily a covering that elevates the down-step just after R^{\prime}

Theorem

The poset $\left(\mathcal{D}_{n}, \leq\right)$ is a lattice
Existence of a join element. By induction on the semilength of the Dyck paths. Iterating this process with P and Q_{1}, construct P^{\prime}, Q^{\prime} such that $P \leq M, Q \leq M$ $\equiv P^{\prime} \leq M, Q^{\prime} \leq M$ where P^{\prime} and Q^{\prime} lie (1). Using the hypothesis recurrence $P^{\prime} \vee Q^{\prime}=P \vee Q$ exists. The existence of greatest lower bound then follows automatically since the poset is finite with a least and greatest elements.

Let (L, \vee, \wedge) be a Lattice :

- L is distributive if $\forall x, y, z \in L, x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$
- The Tamari and BKN lattices are not distributive

- L is semidistributive if it is both join- and meet-semidistributive where
- meet-semidistributive if for all elements $e, x, y \in L$ in the lattice we have :

$$
e \wedge x=e \wedge y \Longrightarrow e \wedge x=e \wedge(x \vee y)
$$

- join-semidistributive if for all elements $e, x, y \in L$ in the lattice we have :

$$
e \vee x=e \vee y \Longrightarrow e \vee x=e \vee(x \wedge y)
$$

- Tamari is semidistributive but not BKN

Characteristics of BKN

Let $A(x, y, z)=\sum_{n \geq 0} a_{n, k, \ell} x^{n} y^{k} z^{\ell}$ be the generating function where $a_{n, k, \ell}$ is the number of Dyck paths of

- semilength n having
- k possible coverings (or equivalently k outgoing edges),
- ℓ incoming edges.

$$
A(x, y, z)=\frac{R(x, y, z)-\sqrt{4 x(x z y-x y-x z+1)(x y+x z-x-1)+R(x, y, z)^{2}}}{2 x(x z y-x y-x z+1)}
$$

where $R(x, y, z)=x^{2} z y-x^{2} y-x^{2} z+x^{2}-x y-x z+x+1$.

Number of edges in the poset

$$
\begin{aligned}
& A(x, y, z)=\frac{R(x, y, z)-\sqrt{4 x(x z y-x y-x z+1)(x y+x z-x-1)+R(x, y, z)^{2}}}{2 x(x z y-x y-x z+1)} \text {, where } \\
& R(x, y, z)=x^{2} z y-x^{2} y-x^{2} z+x^{2}-x y-x z+x+1 .
\end{aligned}
$$

- Using last return decomposition $P=R U S D$
- 6 different cases according to R and S

$$
\begin{align*}
A=1 & +\underbrace{x}_{R=S=\epsilon}+\underbrace{(A-1) x y}_{\substack{R \neq \epsilon \\
S=\epsilon}}+\underbrace{\frac{x^{2} z}{1-x z}}_{\substack{R=\epsilon \\
S=U^{\alpha} D^{\alpha}}}+\underbrace{\frac{x^{2} z}{1-x z}(A-1) y}_{R \neq \epsilon, S=U^{\alpha} D^{\alpha}}+\underbrace{\frac{x^{2} z}{1-x z}(A-1) y A}_{S=S^{\prime} U^{\alpha} D^{\alpha}} \tag{1}\\
& +\underbrace{A x\left(A-1-x-\frac{x^{2} z}{1-x z}-x(A-1) y-\frac{x^{2} z}{1-x z}(A-1) y\right)}_{S \neq S^{\prime} U^{\alpha} D^{\alpha}},
\end{align*}
$$

Comparison with Tamari Lattice

G.F $E(x)$ of the total number of possible coverings over all Dyck paths of semilength n (or equivalently the number of edges in the Hasse diagram) is

$$
E(x)=\frac{-1+4 x+(1-2 x) \sqrt{1-4 x}}{2(1-4 x)(1-x)} .
$$

From $A(x, y, z)$ simply compute $\left.\partial_{y}(A(x, y, 1))\right|_{y=1}$.
The coefficients of x^{n} (A057552 in [Sloane et al., 2003]) are given by

$$
\sum_{k=0}^{n-2}\binom{2 k+2}{k}
$$

Comparison with Tamari Lattice

G.F $E(x)$ of the total number of possible coverings over all Dyck paths of semilength n (or equivalently the number of edges in the Hasse diagram) is

$$
E(x)=\frac{-1+4 x+(1-2 x) \sqrt{1-4 x}}{2(1-4 x)(1-x)} .
$$

From $A(x, y, z)$ simply compute $\left.\partial_{y}(A(x, y, 1))\right|_{y=1}$.
The coefficients of x^{n} (A057552 in [Sloane et al., 2003]) are given by

$$
\sum_{k=0}^{n-2}\binom{2 k+2}{k}
$$

The ratio between the numbers of coverings in \mathcal{T}_{n} and \mathcal{S}_{n} tends towards 3/2.

- An interval is an ordered pair of elements (P, Q) with $P \leq Q$
- Inspired by [Bousquet-Mélou and Chapoton, 2023]
- Let $I(x, y)=\sum_{n, k \geq 1} a_{n, k} x^{n} y^{k}$, where $a_{n, k}$ number of intervals in \mathcal{S}_{n} with upper path ends with k down-steps exactly
- Let $J(x, y)=\sum_{n, k \geq 1} b_{n, k} x^{n} y^{k}$, where $b_{n, k}$ number of intervals (P, Q) in \mathcal{S}_{n} such that the upper path Q is prime and ends with k down-steps exactly

$$
I(x, y)=\underbrace{J(x, y)}_{\begin{array}{c}
\text { Interval is } \tag{2}\\
\text { either prime }
\end{array}}+\underbrace{I(x, 1) \cdot J(x, y)}_{\begin{array}{c}
Q=R U S D, P=P_{1} P_{2} \\
I_{1}:=\left(P_{1}, R\right) \text { and } I_{2}:=\left(P_{2}, U S D\right)
\end{array}}
$$

Intervals in the poset

The following also holds :

$$
J(x, y)=\underbrace{x y}_{P=U D \text { and } Q=U D}+\underbrace{x y l(x, y)}_{\begin{array}{c}
P \text { is prime, } P=U P^{\prime} D \tag{3}\\
\text { and necess. } Q=U Q^{\prime} D
\end{array}}+\underbrace{\frac{J(x, y)-J(x, 1)}{y-1} \cdot C(x y) x y^{2}}_{\begin{array}{c}
P \text { is not prime, } P=R U S D \\
\text { const. } h \text { intervals }
\end{array}},
$$

where $C(x)$ is the g.f. for Catalan numbers, i.e., $C(x)=1+x C(x)^{2}$.

With little rearrangments

$$
\left\{\begin{array}{l}
I(x, y)=\frac{J(x, y)}{1-J(x, 1)}, \\
J(x, y)=x y+x y \frac{J(x, y)}{1-J(x, 1)}+\frac{J(x, y)-J(x, 1)}{y-1} \cdot C(x y) x y^{2} .
\end{array}\right.
$$

In order to compute $J(x, 1)$ use the kernel method [Banderier et al., 2002] on

$$
J(x, y) \cdot\left(1-\frac{x y}{1-J(x, 1)}-\frac{C(x y) x y^{2}}{y-1}\right)=x y-\frac{J(x, 1)}{y-1} \cdot C(x y) x y^{2}
$$

Cancel the factor of $J(x, y)$ by finding y as a function y_{0} of $J(x, 1)$ and x to find:

$$
\left\{\begin{array}{l}
1-\frac{x y_{0}}{1-J(x, 1)}-\frac{C\left(x y_{0}\right) x y_{0}^{2}}{y_{0}-1}=0 \\
x y_{0}-\frac{J(x, 1)}{y_{0}-1} \cdot C\left(x y_{0}\right) x y_{0}^{2}=0
\end{array}\right.
$$

Then $y_{0}=\frac{1+4 x-\sqrt{1-8 x}}{8 x}$.

- The generating function $J(x, y)$ can be found explicitly
- From $J(x, y)$ we exhibit (prime intervals) $J(x, 1)=\frac{1-\sqrt{1-8 x}}{4}=x+2 x^{2}+8 x^{3}+40 x^{4}+224 x^{5}+\ldots$ (A052701) $\left(2^{n-1} C_{n-1}\right)$
- We then obtain : $I(x, y)=J(x, y) \cdot \frac{3-\sqrt{1-8 x}}{2(x+1)}$
- (intervals) $I(x, 1)=\frac{1-2 x-\sqrt{1-8 x}}{2(x+1)}=x+3 x^{2}+13 x^{3}+67 x^{4}+381 x^{5}+\ldots$

$$
(A 064062)\left(\frac{1}{n} \sum_{m=0}^{n-1}(n-m)\binom{n+m-1}{m} 2^{m}\right) \stackrel{n \rightarrow \infty}{=} \frac{2^{3 n} n^{-3 / 2}}{36 \sqrt{\pi}}
$$

Both sequences are related to counting outerplanar maps and bi-colored Dyck Paths [Geffner and Noy Serrano, 2017]

Asymptotic exponential growth of intervals in \mathcal{T}_{n} and \mathcal{S}_{n} is $\left(\frac{32}{27}\right)^{n}$

Generalization

BKN poset

Defined by endowing \mathcal{D}_{n} with the transitive closure \leq of the covering relation transforming an occurrence of $D U^{k} D$ into an occurrence $U^{k} D D$ with $k \geq 1$.

Reminder BKN :

$D U^{k} D^{k}$ into an occurrence $U^{k} D^{k} D$ with

$$
k \geq 1 .
$$

The red arrow does not belong to BKN

- The resulting poset is a lattice meet-semidistributive join-semidistributive

Tamari	yes	yes
BKN	no	no
General	yes	no

- As n tends to infinity, the number of intervals

$$
\kappa \mu^{n} n^{-7 / 2}, \mu=\frac{11+5 \sqrt{5}}{2}, \quad \kappa=\frac{3}{8} \sqrt{\frac{275+123 \sqrt{5}}{10 \pi}}
$$

Asymptotic form
BKN

$$
c_{1} \mu_{1}^{n} n^{-3 / 2}
$$

$$
\mu_{1}=8
$$

Tamari
General
$c_{2} \mu_{2}^{n} n^{-5 / 2}$

$$
\mu_{2}=\frac{256}{27} \approx 9.48148
$$

$$
\mu_{3}=\frac{11+5 \sqrt{5}}{2} \approx 11.09
$$

The red arrow does not belong to BKN

Open questions

Extension to $m-B K N$

- Fix $m \geq 1$, an m-Dyck path is a path in \mathbb{N}^{2} starting at $(0,0)$ ending on the x-axis and consisting of $U=(m, m)$ and $D=(1,-1)$.
- m-BKN poset is defined by endowing \mathcal{D}_{n}^{m} with the transitive closure \leq of the covering transforming an occurrence of $D U^{k} D^{m k}$ into an occurrence $U^{k} D^{m k} D$ with $k \geq 1$.
- m-BKN seems to always give lattices
- Can we extend our approach to count intervals in m-BKN?
- $I_{n}^{2}=0,1,6,55,600,7192,91470, \ldots$
- $I_{n}^{3}=0,1,10,152,2723,53307,1104003, \ldots$

The red arrows belong to 2-Tamari but not to 2-BKN

$$
\overline{A \Rightarrow A} \text { id }
$$

- In [Zeilberger, 2019] showed a sequent calculus capturing the Tamari order (semi-associative law)
- Can we find a calculus capturing the BKN order?
- Currently working on proofs

$$
\begin{gathered}
\frac{A, B, \Delta \Rightarrow C}{A * B, \Delta \Rightarrow C} L \\
\frac{\Delta \Rightarrow A \quad \Gamma \Rightarrow B}{\Delta, \Gamma \Rightarrow A * B} \mathrm{R}
\end{gathered}
$$

- A, B, C are formulas, Δ, Γ are lists of formulas
- (atoms) lowercase latin letters
- (Formulas) $\mathcal{F}:=a, b, \ldots \mid(\mathcal{F} * \mathcal{F})$

Sequent Calculus

$$
\begin{aligned}
& \overline{A \Rightarrow A} \text { id } \\
& \frac{A, B, \Delta \Rightarrow C}{A * B, \Delta \Rightarrow C} L \\
& \frac{\Delta \Rightarrow A \quad C \Rightarrow B}{\Delta, C \Rightarrow A * B} \mathrm{R} 1 \\
& \frac{\mathfrak{T} \Rightarrow A \quad \Delta \Rightarrow B}{\mathfrak{T}, \Delta \Rightarrow A * B} \text { R2 } \\
& A, B, C \text { are formulas, } \Delta \text { a list of formulas } \\
& \text { and } \mathfrak{T} \text { a list of atoms. }
\end{aligned}
$$

Fragment of Lambda Calculus

- A term with no free variables is closed
- A term is indecomposable if it has no closed proper subterms
- An abstraction $\lambda x . M$ is linear if the x has exactly one free occurrence in M. By extension, a term is linear if every abstraction subterm is linear
- A linear term M is planar if its binding diagram is planar

- A term is β-normal if it can not be reduced further by β-reductions

Fragment of Lambda Calculus

- In [Zeilberger, 2019] showed that Tamari intervals are in bijection with Closed indecomposable β-normal linear planar lambda terms
- BKN Lattice being a restriction of the Tamari Lattice
- Can we characterize the properties of the fragment of Lambda Calculus induced by BKN?

Figure from [Zeilberger, 2019]

- In [Zeilberger, 2019] showed that Tamari intervals are in bijection with Closed indecomposable β-normal linear planar lambda terms
- BKN Lattice being a restriction of the Tamari Lattice
- Can we characterize the properties of the fragment of Lambda Calculus induced by BKN?

First term belonging to Tamari but not to BKN

- Sequence of prime intervals:

$$
\begin{aligned}
& x+2 x^{2}+8 x^{3}+40 x^{4}+224 x^{5}+ \\
& 1344 x^{6}+\ldots(\text { A052701 })\left(2^{n-1} C_{n-1}\right)
\end{aligned}
$$

- Also corresponds to Number of Dyck paths of semilength n in which the step $U=(1,1)$ not on ground level comes in 2 colors
- Can we find a bijection between these classes?

- The diameter is the maximum distance between any two vertices
- The diameter of BKN gives an upper bound on the diameter of the Tamari Lattice
- For $n \geq 3$, we conjecture that the diameter of \mathcal{S}_{n} is $2 n-4$, and that this value corresponds to the distance between (UD) ${ }^{n}$ and $U U(U D)^{n-2} D D$.

References i

國 Banderier，C．，Bousquet－Mélou，M．，Denise，A．，Flajolet，P．，Gardy，D．，and Gouyou－Beauchamps，D．（2002）． Generating functions for generating trees．
Discrete mathematics，246（1－3）：29－55．
國 Bousquet－Mélou，M．and Chapoton，F．（2023）． Intervals in the greedy tamari posets．
arXiv preprint arXiv：2303．18077．
－Geffner，I．and Noy Serrano，M．（2017）．
Counting outerplanar maps．
Electronic journal of combinatorics，24（2）：1－8．
R Sloane，N．J．et al．（2003）．
The on－line encyclopedia of integer sequences．
國 Zeilberger，N．（2019）．
A sequent calculus for a semi－associative law．
Logical Methods in Computer Science， 15.

$$
J(x, y)=\frac{x y(-1+J(x, 1))(J(x, 1) C(x y) y-y+1)}{J(x, 1) C(x y) x y^{2}-C(x y) x y^{2}-x y^{2}-J(x, 1) y+x y+J(x, 1)+y-1}
$$

