
Compression of large dynamic graphs

Research proposal - 4 to 6 months

November 9, 2024

Supervisors Binh-Minh Bui-Xuan1, Researcher (LIP6, NPA)
Mehdi Naima2, Assistant professor (LIP6, ComplexNetworks)

Mail mehdi.naima@lip6.fr
Binh-Minh.Bui-Xuan@lip6.fr

Location Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
Address Campus Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris
Keywords Graph algorithms, Graph compression, Streaming algorithms

1 Context

Graph compression refers to the application of data compression techniques
specifically adapted to graph structures.

Lossless graph compression aims to represent a graph more compactly, while
preserving all its information. This can be particularly important in areas such
as the storage and transmission of large graphs.

On the other hand, link streams [5, 3] refer to the manipulation, analysis and
representation of edges when data arrives continuously and in real time, rather
than being stored in its entirety before being processed. This is particularly
relevant in areas where data is generated and updated continuously, such as
social networks, IoT sensors, surveillance systems, etc. See Figure 1 for an
example.

Figure 1: A link stream. The x-axis represents time, while the y-axis represents
nodes. Edges arrive between nodes over time.

The Huffman algorithm is a lossless data compression algorithm invented by
David A. Huffman in 1952 [2, 6]. This algorithm is widely used to compress

1www-npa.lip6.fr/b̃uixuan
2busyweaver.github.io

1

mailto:mehdi.naima@sorbonne-universite.fr
mailto:Binh-Minh.Bui-Xuan@lip6.fr
https://www-npa.lip6.fr/~buixuan/
https://busyweaver.github.io/


files, and is notably used in popular file formats such as GIF, ZIP, and MP3
(for lossless compression).

Huffman algorithm has two main variants a static one and an adaptive one.
Both the static and adaptive versions rely on constructing a tree that assigns a
code to each symbol and is such that symbols with higher frequencies are placed
near the root of the tree, while those with lower frequencies are placed further
away. This makes it possible to give shorter codes to the most frequent symbols.

The static algorithm begins by analyzing the input file and determines the
frequency of appearance of each symbol and then build an optimal tree of the
overall file. See Figure 2 for an example. Therefore the compressor needs to
send both the tree and the encoded text to the decompressor.

On the other hand, the adaptive version does not need to read the whole
file and can process data from a flow and send the compressed data to the
decompressor on the fly. This is interesting especially for dynamic graphs where
edges come in a stream and sometimes it is unknown when the stream ends
but we still want to send the data in a compressed way especially to reduce
communications costs.

Figure 2: Symbols and their frequencies are shown at the top. Bottom: the
Huffman tree built from symbols and frequencies. Figure taken from [1].

2 Objectives

We want to adapt the Dynamic Huffman algorithm for the compression of link
streams. First, we want to adapt the Dynamic Huffman algorithm to graphs
and see what changes need to be made to the classic text compression algorithm.

Assess and evaluate the gain in doing Huffman graph compression versus the
classical Huffman versions of data compression.

Secondly, we aim to build an efficient implementation of this new algorithm
so that we can test it on real-world dynamic graphs or synthetic dynamic graphs

2



and evaluate its performance in comparison with other algorithms of the liter-
ature [4].

Finally, we want to have a theoretical analysis of the performance of our
proposed algorithms in terms of average time and space complexities.

3 Research Plan

• Literature review on dynamic graph compression.

• Algorithm design of specialized version of Huffman adaptive to dynamic
graphs.

• Show the advantage of this specialized version over the classical one.

• Compare our results with known algorithms on dynamic graphs.

References

[1] massivealgorithms.blogspot. https://massivealgorithms.blogspot.

com/2014/06/greedy-algorithms-set-3-huffman-coding.html, 2008.

[2] Donald E Knuth. Dynamic huffman coding. Journal of algorithms, 6(2):163–
180, 1985.

[3] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs
and link streams for the modeling of interactions over time. Social Network
Analysis and Mining, 8:1–29, 2018.

[4] Panagiotis Liakos, Katia Papakonstantinopoulou, Theodore Stefou, and
Alex Delis. On compressing temporal graphs. In 2022 IEEE 38th inter-
national conference on data engineering (ICDE), pages 1301–1313. IEEE,
2022.

[5] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD
Record, 43(1):9–20, 2014.

[6] Jeffrey Scott Vitter. Design and analysis of dynamic huffman codes. Journal
of the ACM (JACM), 34(4):825–845, 1987.

3

https://massivealgorithms.blogspot.com/2014/06/greedy-algorithms-set-3-huffman-coding.html
https://massivealgorithms.blogspot.com/2014/06/greedy-algorithms-set-3-huffman-coding.html

	Context
	Objectives
	Research Plan

