
Introduction to abstract interpretation

Part I

Mehdi Naima1

May 17, 2021

Université Sorbonne Paris-Nord, LIPN.

Table of contents

1. Introduction

2. Formal methods

3. Order Theory

4. Fixpoints

5. Approximations

1

Introduction

Points du jour

� Welcome new young people in

the lab.

� New responsible for the

seminar.

� Suggestion for next year.

� Upcoming seminars: part II of

this talk and Dina’s talk.

2

Points du jour

� Welcome new young people in

the lab.

� New responsible for the

seminar.

� Suggestion for next year.

� Upcoming seminars: part II of

this talk and Dina’s talk.

2

Points du jour

� Welcome new young people in

the lab.

� New responsible for the

seminar.

� Suggestion for next year.

� Upcoming seminars: part II of

this talk and Dina’s talk.

2

Points du jour

� Welcome new young people in

the lab.

� New responsible for the

seminar.

� Suggestion for next year.

� Upcoming seminars: part II of

this talk and Dina’s talk.

2

Material

� My slides are based mostly on Antoine Miné’s lecture notes (freely

available on his webpage) and

� two video courses link and link.

3

https://www-apr.lip6.fr/~mine/enseignement/mpri/current/
https://www.youtube.com/watch?v=1HfmnS1wx4k
https://www.youtube.com/watch?v=bQuSRkeyh8o&t=2521s

Introduction

“Testing is not sufficient!”

� There are many famous

documented bugs even in well

tested softwares.

� We should use formal methods

to provide rigorous,

mathematical insurance of

correctness even though we can

not prove everything.

� Correctness properties are

undecidable! An automatic

general method is impossible to

find (we have to find

compromises).

Image for illustration purposes only

4

Introduction

“Testing is not sufficient!”

� There are many famous

documented bugs even in well

tested softwares.

� We should use formal methods

to provide rigorous,

mathematical insurance of

correctness even though we can

not prove everything.

� Correctness properties are

undecidable! An automatic

general method is impossible to

find (we have to find

compromises).

Image for illustration purposes only

4

Introduction

“Testing is not sufficient!”

� There are many famous

documented bugs even in well

tested softwares.

� We should use formal methods

to provide rigorous,

mathematical insurance of

correctness even though we can

not prove everything.

� Correctness properties are

undecidable! An automatic

general method is impossible to

find (we have to find

compromises).

Image for illustration purposes only

4

Introduction

“Testing is not sufficient!”

� There are many famous

documented bugs even in well

tested softwares.

� We should use formal methods

to provide rigorous,

mathematical insurance of

correctness even though we can

not prove everything.

� Correctness properties are

undecidable! An automatic

general method is impossible to

find (we have to find

compromises).

Image for illustration purposes only

4

Formal methods

Formal methods

From [BK08] “ To put it in a nutshell, formal methods can be considered

as “the applied mathematics for modeling and analyzing ICT systems”

Dijkstra “testing can only show the presence of errors, not their absence.”

Cousot and Cousot in [CC10] classify current formal methods into three

categories

� Deductive methods.

� Model Checking.

� Static Analysis.

Abstract interpretation is a theory of approximation and analysis of

program semantics that belongs to the category of Static Analysis.

5

Formal methods

From [BK08] “ To put it in a nutshell, formal methods can be considered

as “the applied mathematics for modeling and analyzing ICT systems”

Dijkstra “testing can only show the presence of errors, not their absence.”

Cousot and Cousot in [CC10] classify current formal methods into three

categories

� Deductive methods.

� Model Checking.

� Static Analysis.

Abstract interpretation is a theory of approximation and analysis of

program semantics that belongs to the category of Static Analysis.

5

Formal methods

From [BK08] “ To put it in a nutshell, formal methods can be considered

as “the applied mathematics for modeling and analyzing ICT systems”

Dijkstra “testing can only show the presence of errors, not their absence.”

Cousot and Cousot in [CC10] classify current formal methods into three

categories

� Deductive methods.

� Model Checking.

� Static Analysis.

Abstract interpretation is a theory of approximation and analysis of

program semantics that belongs to the category of Static Analysis.

5

Deductive Methods

� Pioneered by Hoare [Hoa69] and Floyd [Flo93].

� Relies mostly on the user.

� A system attempts to produce a formal proof,

given a description of the system, with a set of

logical axioms and inference rules.

� Examples include proof assistants such as Coq

developed by Bertot and Castéran in [BC13].

6

Deductive Methods

� Pioneered by Hoare [Hoa69] and Floyd [Flo93].

� Relies mostly on the user.

� A system attempts to produce a formal proof,

given a description of the system, with a set of

logical axioms and inference rules.

� Examples include proof assistants such as Coq

developed by Bertot and Castéran in [BC13].

6

Deductive Methods

� Pioneered by Hoare [Hoa69] and Floyd [Flo93].

� Relies mostly on the user.

� A system attempts to produce a formal proof,

given a description of the system, with a set of

logical axioms and inference rules.

� Examples include proof assistants such as Coq

developed by Bertot and Castéran in [BC13].

6

Deductive Methods

� Pioneered by Hoare [Hoa69] and Floyd [Flo93].

� Relies mostly on the user.

� A system attempts to produce a formal proof,

given a description of the system, with a set of

logical axioms and inference rules.

� Examples include proof assistants such as Coq

developed by Bertot and Castéran in [BC13].

6

Model Checking

From [BK08] “Model checking is an automated technique that, given a

finite-state model of a system and a formal property, systematically

checks whether this property holds for (a given state in) that model.”

� Pioneered by Clarke, Emerson, Sifakis and

Queille.

� Book [BK08, CJGK+18].

� System verifies certain properties by means of

an exhaustive search.

� Checks the absence of errors (i.e., property

violations) and alternatively can be considered

as an intelligent and effective debugging

technique.

� Software Examples include CBMC.

7

Model Checking

From [BK08] “Model checking is an automated technique that, given a

finite-state model of a system and a formal property, systematically

checks whether this property holds for (a given state in) that model.”

� Pioneered by Clarke, Emerson, Sifakis and

Queille.

� Book [BK08, CJGK+18].

� System verifies certain properties by means of

an exhaustive search.

� Checks the absence of errors (i.e., property

violations) and alternatively can be considered

as an intelligent and effective debugging

technique.

� Software Examples include CBMC.

7

Model Checking

From [BK08] “Model checking is an automated technique that, given a

finite-state model of a system and a formal property, systematically

checks whether this property holds for (a given state in) that model.”

� Pioneered by Clarke, Emerson, Sifakis and

Queille.

� Book [BK08, CJGK+18].

� System verifies certain properties by means of

an exhaustive search.

� Checks the absence of errors (i.e., property

violations) and alternatively can be considered

as an intelligent and effective debugging

technique.

� Software Examples include CBMC.

7

Model Checking

From [BK08] “Model checking is an automated technique that, given a

finite-state model of a system and a formal property, systematically

checks whether this property holds for (a given state in) that model.”

� Pioneered by Clarke, Emerson, Sifakis and

Queille.

� Book [BK08, CJGK+18].

� System verifies certain properties by means of

an exhaustive search.

� Checks the absence of errors (i.e., property

violations) and alternatively can be considered

as an intelligent and effective debugging

technique.

� Software Examples include CBMC.

7

Model Checking

From [BK08] “Model checking is an automated technique that, given a

finite-state model of a system and a formal property, systematically

checks whether this property holds for (a given state in) that model.”

� Pioneered by Clarke, Emerson, Sifakis and

Queille.

� Book [BK08, CJGK+18].

� System verifies certain properties by means of

an exhaustive search.

� Checks the absence of errors (i.e., property

violations) and alternatively can be considered

as an intelligent and effective debugging

technique.

� Software Examples include CBMC.

7

Model Checking

From [BK08] “Model checking is an automated technique that, given a

finite-state model of a system and a formal property, systematically

checks whether this property holds for (a given state in) that model.”

� Pioneered by Clarke, Emerson, Sifakis and

Queille.

� Book [BK08, CJGK+18].

� System verifies certain properties by means of

an exhaustive search.

� Checks the absence of errors (i.e., property

violations) and alternatively can be considered

as an intelligent and effective debugging

technique.

� Software Examples include CBMC.

7

Static Analysis

� system verifies an over-approximation of a

behavioural property of the program.

� References include [NNH04, RY20].

� Works directly on the source code and infer

properties on program executions

automatically.

� Signals all possible Run Time Errors

(soundness). This includes division by zero,

bounds array indexing, integers and arithmetic

overflow. . .

� It also signal some errors that cannot really

happen (false alarms on spurious executions

e.g. when hypotheses on the execution

environment are not taken into account).

8

Static Analysis

� system verifies an over-approximation of a

behavioural property of the program.

� References include [NNH04, RY20].

� Works directly on the source code and infer

properties on program executions

automatically.

� Signals all possible Run Time Errors

(soundness). This includes division by zero,

bounds array indexing, integers and arithmetic

overflow. . .

� It also signal some errors that cannot really

happen (false alarms on spurious executions

e.g. when hypotheses on the execution

environment are not taken into account).

8

Static Analysis

� system verifies an over-approximation of a

behavioural property of the program.

� References include [NNH04, RY20].

� Works directly on the source code and infer

properties on program executions

automatically.

� Signals all possible Run Time Errors

(soundness). This includes division by zero,

bounds array indexing, integers and arithmetic

overflow. . .

� It also signal some errors that cannot really

happen (false alarms on spurious executions

e.g. when hypotheses on the execution

environment are not taken into account).

8

Static Analysis

� system verifies an over-approximation of a

behavioural property of the program.

� References include [NNH04, RY20].

� Works directly on the source code and infer

properties on program executions

automatically.

� Signals all possible Run Time Errors

(soundness). This includes division by zero,

bounds array indexing, integers and arithmetic

overflow. . .

� It also signal some errors that cannot really

happen (false alarms on spurious executions

e.g. when hypotheses on the execution

environment are not taken into account).

8

Static Analysis

� system verifies an over-approximation of a

behavioural property of the program.

� References include [NNH04, RY20].

� Works directly on the source code and infer

properties on program executions

automatically.

� Signals all possible Run Time Errors

(soundness). This includes division by zero,

bounds array indexing, integers and arithmetic

overflow. . .

� It also signal some errors that cannot really

happen (false alarms on spurious executions

e.g. when hypotheses on the execution

environment are not taken into account).

8

Abstract Interpretation

� Part of static analysis methods.

� Introduced by Cousot and

Cousot in [CC77]

� a general theory of the

approximation of formal

program semantics based on

monotonic functions over

ordered sets, especially lattices.

� It unifies existing semantics.

� Guides design to ensure

soundness by construction.

� Examples of softwares include

Astrée

Concrete domains of program

properties are hard to follow, create

tailored abstract domains that

overapproximate the concrete ones.

9

Abstract Interpretation

� Part of static analysis methods.

� Introduced by Cousot and

Cousot in [CC77]

� a general theory of the

approximation of formal

program semantics based on

monotonic functions over

ordered sets, especially lattices.

� It unifies existing semantics.

� Guides design to ensure

soundness by construction.

� Examples of softwares include

Astrée

Concrete domains of program

properties are hard to follow, create

tailored abstract domains that

overapproximate the concrete ones.

9

Abstract Interpretation

� Part of static analysis methods.

� Introduced by Cousot and

Cousot in [CC77]

� a general theory of the

approximation of formal

program semantics based on

monotonic functions over

ordered sets, especially lattices.

� It unifies existing semantics.

� Guides design to ensure

soundness by construction.

� Examples of softwares include

Astrée

Concrete domains of program

properties are hard to follow, create

tailored abstract domains that

overapproximate the concrete ones.

9

Abstract Interpretation

� Part of static analysis methods.

� Introduced by Cousot and

Cousot in [CC77]

� a general theory of the

approximation of formal

program semantics based on

monotonic functions over

ordered sets, especially lattices.

� It unifies existing semantics.

� Guides design to ensure

soundness by construction.

� Examples of softwares include

Astrée

Concrete domains of program

properties are hard to follow, create

tailored abstract domains that

overapproximate the concrete ones.

9

Abstract Interpretation

� Part of static analysis methods.

� Introduced by Cousot and

Cousot in [CC77]

� a general theory of the

approximation of formal

program semantics based on

monotonic functions over

ordered sets, especially lattices.

� It unifies existing semantics.

� Guides design to ensure

soundness by construction.

� Examples of softwares include

Astrée

Concrete domains of program

properties are hard to follow, create

tailored abstract domains that

overapproximate the concrete ones.

9

Abstract Interpretation

� Part of static analysis methods.

� Introduced by Cousot and

Cousot in [CC77]

� a general theory of the

approximation of formal

program semantics based on

monotonic functions over

ordered sets, especially lattices.

� It unifies existing semantics.

� Guides design to ensure

soundness by construction.

� Examples of softwares include

Astrée

Concrete domains of program

properties are hard to follow, create

tailored abstract domains that

overapproximate the concrete ones.

9

Abstract Interpretation

� Part of static analysis methods.

� Introduced by Cousot and

Cousot in [CC77]

� a general theory of the

approximation of formal

program semantics based on

monotonic functions over

ordered sets, especially lattices.

� It unifies existing semantics.

� Guides design to ensure

soundness by construction.

� Examples of softwares include

Astrée

!
x

y

Concrete domains of program

properties are hard to follow, create

tailored abstract domains that

overapproximate the concrete ones.

9

Abstract Interpretation

� Part of static analysis methods.

� Introduced by Cousot and

Cousot in [CC77]

� a general theory of the

approximation of formal

program semantics based on

monotonic functions over

ordered sets, especially lattices.

� It unifies existing semantics.

� Guides design to ensure

soundness by construction.

� Examples of softwares include

Astrée

!
x

y

Concrete domains of program

properties are hard to follow, create

tailored abstract domains that

overapproximate the concrete ones.

9

Abstract Interpretation

� Part of static analysis methods.

� Introduced by Cousot and

Cousot in [CC77]

� a general theory of the

approximation of formal

program semantics based on

monotonic functions over

ordered sets, especially lattices.

� It unifies existing semantics.

� Guides design to ensure

soundness by construction.

� Examples of softwares include

Astrée

!
x

y

!

!

Concrete domains of program

properties are hard to follow, create

tailored abstract domains that

overapproximate the concrete ones.

9

Order Theory

Partial orders

Definition (Partial Order, Poset)

A partial order v on a set X is a binary relation over X such that:

� reflexive: ∀x ∈ X , x v x ;

� anti-symmetric: ∀x , y ∈ X , (x v y) ∧ (y v x) =⇒ (x = y);

� transitive: ∀x , y , z ∈ X , (x v y) ∧ (y v z) =⇒ (x v z).

Let X = {a, b, c , d}, then R =

{(a, a), (b, b), (c , c), (d , d)(a, b), (a, c), (b, d), (a, d)}
is a partial order.

Representation with Hasse Diagram.

10

Partial orders

Definition (Partial Order, Poset)

A partial order v on a set X is a binary relation over X such that:

� reflexive: ∀x ∈ X , x v x ;

� anti-symmetric: ∀x , y ∈ X , (x v y) ∧ (y v x) =⇒ (x = y);

� transitive: ∀x , y , z ∈ X , (x v y) ∧ (y v z) =⇒ (x v z).

Let X = {a, b, c , d}, then R =

{(a, a), (b, b), (c , c), (d , d)(a, b), (a, c), (b, d), (a, d)}
is a partial order.

Representation with Hasse Diagram.

a

b c

d

10

Poset examples

0

1

2

3

...

Integer poset (totally

ordered)

Powerset Poset Poset

11

Poset examples

0

1

2

3

...

Integer poset (totally

ordered)

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Powerset Poset

Poset

11

Poset examples

0

1

2

3

...

Integer poset (totally

ordered)

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Powerset Poset

a

b c

ed

f

Poset

11

Lattices

� Given two elements a and b in a poset X , an upper bound is any

element c ∈ X such that a v c and b v c .

� Moreover, c is the least upper bound or join “t”, if it exists is the

smallest element greater than both a and b.

� These notions have their symmetric the lower bound and greatest

lower bound (or meet “u”).

Definition (Lattice)

Lattices are particular posets which contain more structure. They are

posets where the meet and join always exist for pairs of elements.

If the property holds for arbitrary set the lattice is said to be complete.

12

Lattices

� Given two elements a and b in a poset X , an upper bound is any

element c ∈ X such that a v c and b v c .

� Moreover, c is the least upper bound or join “t”, if it exists is the

smallest element greater than both a and b.

� These notions have their symmetric the lower bound and greatest

lower bound (or meet “u”).

Definition (Lattice)

Lattices are particular posets which contain more structure. They are

posets where the meet and join always exist for pairs of elements.

If the property holds for arbitrary set the lattice is said to be complete.

12

Lattice examples

a

b c

ed

f

Not a lattice, d and e

do not have a meet.

Powerset poset is a

complete lattice

Sign poset is a

complete lattice

13

Lattice examples

a

b c

ed

f

Not a lattice, d and e

do not have a meet.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Powerset poset is a

complete lattice

Sign poset is a

complete lattice

13

Lattice examples

a

b c

ed

f

Not a lattice, d and e

do not have a meet.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Powerset poset is a

complete lattice

⊥

{-} {0} {+}

{-,0} {0,+}

>

Sign poset is a

complete lattice

13

Fixpoints

Fixpoints

Definition

Given a poset (X ,v) and an operator

f : X → X :

� x is a fixpoint of f if x = f (x). We

denote as fp(f) = {x ∈ X |f (x) = x}
the set of fixpoints of f .

� x is a prefixpoint of f if x v f (x).

� x is a postfixpoint of f if f (x) v x .

� lfp f = min{y ∈ fp(f)} if it exists is

called the least fixpoint of f .

14

Fixpoints

Definition

Given a poset (X ,v) and an operator

f : X → X :

� x is a fixpoint of f if x = f (x). We

denote as fp(f) = {x ∈ X |f (x) = x}
the set of fixpoints of f .

� x is a prefixpoint of f if x v f (x).

� x is a postfixpoint of f if f (x) v x .

� lfp f = min{y ∈ fp(f)} if it exists is

called the least fixpoint of f .

lfp

fp

gfp

pre post pre

14

Fixpoint examples

Definition

f (>) = >
f (a) = a

f (b) = >
f (⊥) = a

fp(f) = {a,>}
lfp(f) = a

gfp(f) = >
pre(f) = {⊥, b}
post(f) = ∅

Definition

f (>) = b

f (a) = >
f (b) = a

f (⊥) = a

fp(f) = ∅
pre(f) = {⊥, a}

⊥

a b

>

15

Fixpoint examples

Definition

f (>) = >
f (a) = a

f (b) = >
f (⊥) = a

fp(f) = {a,>}
lfp(f) = a

gfp(f) = >
pre(f) = {⊥, b}
post(f) = ∅

Definition

f (>) = b

f (a) = >
f (b) = a

f (⊥) = a

fp(f) = ∅
pre(f) = {⊥, a} ⊥

a b

>

15

Knaster-Tarski Theorem

Definition

A function f in a complete lattice S is monotone if

∀, x , y ∈ S , x v y =⇒ f (x) v f (y)

Theorem ([T+55])

Let S be a complete lattice and f a monotone function on S then f

admits a least fixpoint

lfp f =
l
{x ∈ S , f (x) v x}.

16

Approximations

Concretization

When we are given a concrete and an abstract domain we need to be

able to pass from one to another. This is done with two functions that

are called concretization and abstraction.

Definition

A concretization function γ ∈ (A,v)→ (C ,≤) is a monotone function

assigning a concrete meaning, in C to each abstract element in A.

Example

Let the concrete domain be the complete integer powerset lattice and

the abstract domain be the interval lattice. Then elements of the

abstract domain are intervals of the form [a, b] with a ≥ b. Then

γ([a, b]) = {x | a ≤ x ≤ b}

17

Concretization

When we are given a concrete and an abstract domain we need to be

able to pass from one to another. This is done with two functions that

are called concretization and abstraction.

Definition

A concretization function γ ∈ (A,v)→ (C ,≤) is a monotone function

assigning a concrete meaning, in C to each abstract element in A.

Example

Let the concrete domain be the complete integer powerset lattice and

the abstract domain be the interval lattice. Then elements of the

abstract domain are intervals of the form [a, b] with a ≥ b. Then

γ([a, b]) = {x | a ≤ x ≤ b}

17

Concretization

When we are given a concrete and an abstract domain we need to be

able to pass from one to another. This is done with two functions that

are called concretization and abstraction.

Definition

A concretization function γ ∈ (A,v)→ (C ,≤) is a monotone function

assigning a concrete meaning, in C to each abstract element in A.

Example

Let the concrete domain be the complete integer powerset lattice and

the abstract domain be the interval lattice. Then elements of the

abstract domain are intervals of the form [a, b] with a ≥ b. Then

γ([a, b]) = {x | a ≤ x ≤ b}

17

Concretization

∅

{0}{−1} {1}

{0, 1}{−1, 0} {1, 9}

{0, 1, 9}{−1, 0, 1}

... ...

{−1, 0, 1, 9}

...

...

Z

... ...

Powerset integer

domain C

The concretization

function γ : A → C is

defined by

γ([a, b]) = {x | a ≤ x ≤ b}
γ(⊥) = ∅

For example

γ([1, 4]) = {1, 2, 3, 4}

⊥

[0, 0][−1,−1] [1, 1]

[0, 1][−1, 0] [1, 9]

[0, 9][−1, 1]

... ...

[−1, 9]

[−∞, 9] [−1,+∞] [0,+∞][−∞, 9] ...

...

[−∞,+∞]

... ...

Interval domain A

18

Concretization

∅

{0}{−1} {1}

{0, 1}{−1, 0} {1, 9}

{0, 1, 9}{−1, 0, 1}

... ...

{−1, 0, 1, 9}

...

...

Z

... ...

Powerset integer

domain C

The concretization

function γ : A → C is

defined by

γ([a, b]) = {x | a ≤ x ≤ b}
γ(⊥) = ∅

For example

γ([1, 4]) = {1, 2, 3, 4}
⊥

[0, 0][−1,−1] [1, 1]

[0, 1][−1, 0] [1, 9]

[0, 9][−1, 1]

... ...

[−1, 9]

[−∞, 9] [−1,+∞] [0,+∞][−∞, 9] ...

...

[−∞,+∞]

... ...

Interval domain A

18

Abstraction

Definition (Sound abstraction)

Let (A,v), (C ,≤) be two posets. a ∈ A is a sound abstraction of

c ∈ C if and only if c ≤ γ(a).

Example

With the same concrete and

abstract domains abstraction

function α : C → A is defined by

α(c) = [min(c),max(c)]

Therefore (α ◦ γ)({1, 3, 5}) = {1, 2, 3, 4, 5} and {1, 3, 5} ⊆ {1, 2, 3, 4, 5}
We loose information when passing through the abstract domain but the

result is sound (we get an overapproximation of the initial value).

19

Abstraction

Definition (Sound abstraction)

Let (A,v), (C ,≤) be two posets. a ∈ A is a sound abstraction of

c ∈ C if and only if c ≤ γ(a).

concrete lattice abstract lattice

γ

c

a

γ(a)

≤

Example

With the same concrete and

abstract domains abstraction

function α : C → A is defined by

α(c) = [min(c),max(c)]

Therefore (α ◦ γ)({1, 3, 5}) = {1, 2, 3, 4, 5} and {1, 3, 5} ⊆ {1, 2, 3, 4, 5}
We loose information when passing through the abstract domain but the

result is sound (we get an overapproximation of the initial value).

19

Abstraction

Definition (Sound abstraction)

Let (A,v), (C ,≤) be two posets. a ∈ A is a sound abstraction of

c ∈ C if and only if c ≤ γ(a).

concrete lattice abstract lattice

γ

c

a

γ(a)

≤

Example

With the same concrete and

abstract domains abstraction

function α : C → A is defined by

α(c) = [min(c),max(c)]

Therefore (α ◦ γ)({1, 3, 5}) = {1, 2, 3, 4, 5} and {1, 3, 5} ⊆ {1, 2, 3, 4, 5}
We loose information when passing through the abstract domain but the

result is sound (we get an overapproximation of the initial value).

19

Abstraction

Definition (Sound abstraction)

Let (A,v), (C ,≤) be two posets. a ∈ A is a sound abstraction of

c ∈ C if and only if c ≤ γ(a).

concrete lattice abstract lattice

γ

c

a

γ(a)

≤

Example

With the same concrete and

abstract domains abstraction

function α : C → A is defined by

α(c) = [min(c),max(c)]

Therefore (α ◦ γ)({1, 3, 5}) = {1, 2, 3, 4, 5} and {1, 3, 5} ⊆ {1, 2, 3, 4, 5}
We loose information when passing through the abstract domain but the

result is sound (we get an overapproximation of the initial value).

19

Galois connection

� a monotonic concretization γ is sufficient to reason about soundness.

� more structure, if available, can help us design sound and accurate

analyses.

� In the standard Abstract interpretation framework we assume

additionally the existence of a monotonic abstraction function

α : C → A that associates an abstract element to a concrete one

such that (α, γ) forms a Galois connection

20

Galois connection

� a monotonic concretization γ is sufficient to reason about soundness.

� more structure, if available, can help us design sound and accurate

analyses.

� In the standard Abstract interpretation framework we assume

additionally the existence of a monotonic abstraction function

α : C → A that associates an abstract element to a concrete one

such that (α, γ) forms a Galois connection

20

Galois connection

� a monotonic concretization γ is sufficient to reason about soundness.

� more structure, if available, can help us design sound and accurate

analyses.

� In the standard Abstract interpretation framework we assume

additionally the existence of a monotonic abstraction function

α : C → A that associates an abstract element to a concrete one

such that (α, γ) forms a Galois connection

20

Galois connection

Definition (Galois connection)

Given two posets (A,v) and (C ,≤), the pair

(α : C → A, γ : A→ C) is a Galois

connection if:

∀a ∈ A, c ∈ C , c ≤ γ(a)⇔ α(c) v a.

Properties of Galois connections:

� γ ◦ α is extensive : ∀c , c ≤ γ(α(c)).

� α ◦ γ is extensive : ∀a, α(γ(a)) v a.

� α and γ are monotonic.

α and γ are called adjoint functions and each

one of them can be defined in term of the

other.

For instance α(c) = u{a | c ≤ γ(a)}

21

Galois connection

Definition (Galois connection)

Given two posets (A,v) and (C ,≤), the pair

(α : C → A, γ : A→ C) is a Galois

connection if:

∀a ∈ A, c ∈ C , c ≤ γ(a)⇔ α(c) v a.

Properties of Galois connections:

� γ ◦ α is extensive : ∀c , c ≤ γ(α(c)).

� α ◦ γ is extensive : ∀a, α(γ(a)) v a.

� α and γ are monotonic.

α and γ are called adjoint functions and each

one of them can be defined in term of the

other.

For instance α(c) = u{a | c ≤ γ(a)}

γ(a)

c

concrete lattice abstract lattice

aγ

α

α(c)

≤ v

21

Galois connection

Definition (Galois connection)

Given two posets (A,v) and (C ,≤), the pair

(α : C → A, γ : A→ C) is a Galois

connection if:

∀a ∈ A, c ∈ C , c ≤ γ(a)⇔ α(c) v a.

Properties of Galois connections:

� γ ◦ α is extensive : ∀c , c ≤ γ(α(c)).

� α ◦ γ is extensive : ∀a, α(γ(a)) v a.

� α and γ are monotonic.

α and γ are called adjoint functions and each

one of them can be defined in term of the

other.

For instance α(c) = u{a | c ≤ γ(a)}

γ(a)

c

concrete lattice abstract lattice

aγ

α

α(c)

≤ v

21

Galois connection examples

∅

{0}{−1} {1}

{0, 1}{−1, 0} {1, 9}

{0, 1, 9}{−1, 0, 1}

... ...

{−1, 0, 1, 9}

...

...

Z

... ...

Powerset integer

domain C

The concretization

function γ : A → C is

defined by

γ([a, b]) = {x | a ≤ x ≤ b}
γ(⊥) = ∅

and the abstraction

function α : C → A is

defined by

α(c) = [min(c),max(c)]

⊥

[0, 0][−1,−1] [1, 1]

[0, 1][−1, 0] [1, 9]

[0, 9][−1, 1]

... ...

[−1, 9]

[−∞, 9] [−1,+∞] [0,+∞][−∞, 9] ...

...

[−∞,+∞]

... ...

Interval domain A

22

Galois connection examples

∅

{0}{−1} {1}

{0, 1}{−1, 0} {1, 9}

{0, 1, 9}{−1, 0, 1}

... ...

{−1, 0, 1, 9}

...

...

Z

... ...

Powerset integer

domain C

The concretization function

γ : A → C is defined by

γ(>) = Z

γ({−}) = {x | x < 0}

γ({+}) = {x | x > 0}

γ({−, 0}) = {x | x ≤ 0}

γ({0,+}) = {x | x ≥ 0}

γ(⊥) = ∅

and the abstraction function

α : C → A is defined by

α(c) =

{+} if c ∈ Z>0

{−} if c ∈ Z<0

{0,+} if c ∈ Z≥0

{−, 0} if c ∈ Z≤0

⊥ if c = ∅
> else

(1)

⊥

{-} {0} {+}

{-,0} {0,+}

>

Abstract sign domain A

23

Best operator abstraction

Every operation that can happen on the concrete domain has to have an abstract

equivalent!

Definition (Sound operator abstraction)

Given a concretization γ from an abstract domain (A,v) to a concrete domain

(C ,≤), a concrete operator f : C → C , and an abstract operator g : A→ A:

g is a sound abstraction of f if ∀a ∈ A : f (γ(a)) ≤ γ(g(a))

We know that the best abstraction of c is α(c) from the definition (

α(c) = u{a | c ≤ γ(a)}). From Galois connection, and if g is a sound

abstraction

c ≤ γ(a)⇔ α(c) v a

(f ◦ γ)(a) ≤ (γ ◦ g)(a)⇔ (α ◦ f ◦ γ)(a) v g(a).

The lattice structure gives an automatic abstract operation

Definition (Best operator abstraction)

Given a Galois connection (C ,≤)
γ

�
α

(A,v) and a concrete operator

f : C → C , the best abstraction of f is given by α ◦ f ◦ γ.

24

Best operator abstraction

Every operation that can happen on the concrete domain has to have an abstract

equivalent!

Definition (Sound operator abstraction)

Given a concretization γ from an abstract domain (A,v) to a concrete domain

(C ,≤), a concrete operator f : C → C , and an abstract operator g : A→ A:

g is a sound abstraction of f if ∀a ∈ A : f (γ(a)) ≤ γ(g(a))

We know that the best abstraction of c is α(c) from the definition (

α(c) = u{a | c ≤ γ(a)}). From Galois connection, and if g is a sound

abstraction

c ≤ γ(a)⇔ α(c) v a

(f ◦ γ)(a) ≤ (γ ◦ g)(a)⇔ (α ◦ f ◦ γ)(a) v g(a).

The lattice structure gives an automatic abstract operation

Definition (Best operator abstraction)

Given a Galois connection (C ,≤)
γ

�
α

(A,v) and a concrete operator

f : C → C , the best abstraction of f is given by α ◦ f ◦ γ.

24

Best operator abstraction

Every operation that can happen on the concrete domain has to have an abstract

equivalent!

Definition (Sound operator abstraction)

Given a concretization γ from an abstract domain (A,v) to a concrete domain

(C ,≤), a concrete operator f : C → C , and an abstract operator g : A→ A:

g is a sound abstraction of f if ∀a ∈ A : f (γ(a)) ≤ γ(g(a))

We know that the best abstraction of c is α(c) from the definition (

α(c) = u{a | c ≤ γ(a)}). From Galois connection, and if g is a sound

abstraction

c ≤ γ(a)⇔ α(c) v a

(f ◦ γ)(a) ≤ (γ ◦ g)(a)⇔ (α ◦ f ◦ γ)(a) v g(a).

The lattice structure gives an automatic abstract operation

Definition (Best operator abstraction)

Given a Galois connection (C ,≤)
γ

�
α

(A,v) and a concrete operator

f : C → C , the best abstraction of f is given by α ◦ f ◦ γ.

24

Best operator abstraction

Every operation that can happen on the concrete domain has to have an abstract

equivalent!

Definition (Sound operator abstraction)

Given a concretization γ from an abstract domain (A,v) to a concrete domain

(C ,≤), a concrete operator f : C → C , and an abstract operator g : A→ A:

g is a sound abstraction of f if ∀a ∈ A : f (γ(a)) ≤ γ(g(a))

We know that the best abstraction of c is α(c) from the definition (

α(c) = u{a | c ≤ γ(a)}). From Galois connection, and if g is a sound

abstraction

c ≤ γ(a)⇔ α(c) v a

(f ◦ γ)(a) ≤ (γ ◦ g)(a)⇔ (α ◦ f ◦ γ)(a) v g(a).

The lattice structure gives an automatic abstract operation

Definition (Best operator abstraction)

Given a Galois connection (C ,≤)
γ

�
α

(A,v) and a concrete operator

f : C → C , the best abstraction of f is given by α ◦ f ◦ γ.
24

Example of best operator abstraction

Definition (Best operator abstraction)

Given a Galois connection (C ,≤)
γ

�
α

(A,v) and a concrete operator

f : C → C , the best abstraction of f is given by α ◦ f ◦ γ.

Example

Consider the Galois connection between powerset integer domain and

interval domain. Let the operator f : C → C in the powerset domain be

defined as f (X) = {x + 1 | x ∈ X}. f ({1, 3, 4}) = {2, 4, 5}.
The best abstraction of f in the abstract domain of intervals is thus

defined by f] = (α ◦ f ◦ γ), then for example, α({1, 3, 4}) = [1, 4] and

f]([1, 4]) = [2, 5].

Composition of best operator abstractions is not necessarily the best

operator abstraction

That is if g and g ′ are the best abstractions of f and f ′ , then (g ◦ g ′) is

not always the best abstraction!

25

Example of best operator abstraction

Definition (Best operator abstraction)

Given a Galois connection (C ,≤)
γ

�
α

(A,v) and a concrete operator

f : C → C , the best abstraction of f is given by α ◦ f ◦ γ.

Example

Consider the Galois connection between powerset integer domain and

interval domain. Let the operator f : C → C in the powerset domain be

defined as f (X) = {x + 1 | x ∈ X}. f ({1, 3, 4}) = {2, 4, 5}.
The best abstraction of f in the abstract domain of intervals is thus

defined by f] = (α ◦ f ◦ γ), then for example, α({1, 3, 4}) = [1, 4] and

f]([1, 4]) = [2, 5].

Composition of best operator abstractions is not necessarily the best

operator abstraction

That is if g and g ′ are the best abstractions of f and f ′ , then (g ◦ g ′) is

not always the best abstraction!

25

Fixpoint transfer

Critical parts of the semantics of a program are defined as least fixpoints lfp f of some

monotonic or continuous operator f : C → C in the concrete domain (C ,≤).

In order to abstract lfp f in an abstract domain (A,v), a natural idea is to start with a

sound abstraction g : A→ A of f .

Theorem (Tarskian fixpoint

transfer)

Given a complete lattice concrete

domain, a monotonic concrete function

f : C → C , and a sound abstraction

g : A→ A in a poset abstract domain,

then any postfixpoint a of g is a sound

abstraction of lfp f , i.e lfp f ≤ γ(a)

the theorem can be applied in the useful

case where abstract fixpoints are hard to

compute, or do not even exist at all.

Sometimes fixpoints exist in the concrete,

but are not guaranteed to exist in the

abstract.

26

Fixpoint transfer

Critical parts of the semantics of a program are defined as least fixpoints lfp f of some

monotonic or continuous operator f : C → C in the concrete domain (C ,≤).

In order to abstract lfp f in an abstract domain (A,v), a natural idea is to start with a

sound abstraction g : A→ A of f .

Theorem (Tarskian fixpoint

transfer)

Given a complete lattice concrete

domain, a monotonic concrete function

f : C → C , and a sound abstraction

g : A→ A in a poset abstract domain,

then any postfixpoint a of g is a sound

abstraction of lfp f , i.e lfp f ≤ γ(a)

the theorem can be applied in the useful

case where abstract fixpoints are hard to

compute, or do not even exist at all.

Sometimes fixpoints exist in the concrete,

but are not guaranteed to exist in the

abstract.

c

concrete lattice abstract lattice

lfp f

α(c)

a

γ
α(a)

f

g

26

Fixpoint transfer

Critical parts of the semantics of a program are defined as least fixpoints lfp f of some

monotonic or continuous operator f : C → C in the concrete domain (C ,≤).

In order to abstract lfp f in an abstract domain (A,v), a natural idea is to start with a

sound abstraction g : A→ A of f .

Theorem (Tarskian fixpoint

transfer)

Given a complete lattice concrete

domain, a monotonic concrete function

f : C → C , and a sound abstraction

g : A→ A in a poset abstract domain,

then any postfixpoint a of g is a sound

abstraction of lfp f , i.e lfp f ≤ γ(a)

the theorem can be applied in the useful

case where abstract fixpoints are hard to

compute, or do not even exist at all.

Sometimes fixpoints exist in the concrete,

but are not guaranteed to exist in the

abstract.

c

concrete lattice abstract lattice

lfp f

α(c)

a

γ
α(a)

f

g

26

To keep in mind for next time

� Concrete and abstract domains.

� Order theory and lattices.

� Galois connections.

� Fixpoints transfer theorem.

Thank you for your attention

27

To keep in mind for next time

� Concrete and abstract domains.

� Order theory and lattices.

� Galois connections.

� Fixpoints transfer theorem.

Thank you for your attention

27

References i

References

[BC13] Yves Bertot and Pierre Castéran. Interactive theorem

proving and program development: Coq’Art: the calculus of

inductive constructions. Springer Science & Business Media,

2013.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model

checking. MIT press, 2008.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation:

a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of

the 4th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, pages 238–252, 1977.

28

References ii

[CC10] Patrick Cousot and Radhia Cousot. A gentle introduction to

formal verification of computer systems by abstract

interpretation, 2010.

[CJGK+18] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening,

Doron Peled, and Helmut Veith. Model checking. MIT press,

2018.

[Flo93] Robert W Floyd. Assigning meanings to programs. In

Program Verification, pages 65–81. Springer, 1993.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for

computer programming. Communications of the ACM,

12(10):576–580, 1969.

[NNH04] Flemming Nielson, Hanne R Nielson, and Chris Hankin.

Principles of program analysis. Springer Science & Business

Media, 2004.

29

References iii

[RY20] Xavier Rival and Kwangkeun Yi. Introduction to Static

Analysis: An Abstract Interpretation Perspective. Mit Press,

2020.

[T+55] Alfred Tarski et al. A lattice-theoretical fixpoint theorem and

its applications. Pacific journal of Mathematics,

5(2):285–309, 1955.

30

	Introduction
	Formal methods
	Order Theory
	Fixpoints
	Approximations
	References

