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Abstract

A very brief and smooth introduction to generating functions.

I made this notes by writing very simple ideas from some excellent books
that deals in big parts with generating functions and more general topics in
combinatorics. I highly recommend reading parts of them for any computer
scientist or mathematician interested in the subject of average case analysis of
algorithms, deep analysis of data structures, generating functions and combina-
torics in general . [1],[2], [4] and [5].

1 The science of counting
A generating function is a clothesline on which we hang up a se-
quence of numbers for display.

(Herbert S. Wilf)

Suppose that we have a sequence of objects a0, a1, a2, . . . , an; . . . that we
want to count. Most people would be happy with an explicit formula for the
coefficients of the sequence. For example,
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Example 1.

(1) an =


1, n = 0
n−1∑
k=0

ak n ≥ 1.

We see that a1 = 1, a2 = 2, a4 = 4, a5 = 8. We can the deduce that the
recurrence simplifies to an = 2an−1 and as a result,

an = 2n−1.

However, explicit formulas for the coefficients of a sequence are not always
easy to find. For example, what can we say about?

Example 2.

(2) fn =

 0, n = 0,
1, n = 1,
fn−1 + fn−2 n ≥ 2.

The answer this time seems less obvious. Fortunately, this last sequence is
the famous Fibonacci sequence and we have an explicit formula,

fn =
1√
5
(φn − φ−n), φ =

1 +
√
5

2
.

Which involves irrational numbers.

But for some people if asked about these examples. They would answer in
a surprising way,

an = [zn](1 +
z

1− 2z
).

fn = [zn](
1

1− z − z2
).

Where the operator [zn]G(z) is the coefficient of zn in the expansion of G(z).
For example, if G(z) = 1

1−3z =
∑
n≥0

3nzn. then,

[zn]G(z) = [zn]
∑
n≥0

3nzn = 3n.

Moreover, they will call the functions A(z) = (1+ z
1−2z ) and F (z) = ( 1

1−z−z2 )
the generating functions of an and fn respectively.

Definition 1. Let an be a sequence of numbers, its ordinary generating
function is

A(z) =
∑
n≥0

anz
n.

Where z will usually be a complex number.

2



Ordinary generating functions are a type of generating functions where their
kernel is equal to zn. Other different types of generating functions exist.

∑
n≥0

an
zn

n!
(Exponential generating function)

∑
n≥0

an
n!

< t >n+1
(Factorial generating function)

∑
n≥0

an
tn

1− tn
(Lambert generating function)

Where < t >n= t(t+ 1) . . . (t+ n− 1)
It turned out that the generating functions are very powerful tools for dif-

ferent purposes. Here are some of the main that can be done with a generating
function.

• Solving recurrences.

• Finding new recurrences.

• Getting asymptotics formulas for a recurrence (see [2] for a high quality
exposition of existing methods and singularity theory).

• Proving identities.

• Showing proprorties of a sequence, unimodality, convexity,. . .

1.1 Computing a generating function from a sequence
General method:

1. Writing the recurrence of an.

2. Summing over all n ≥ 0 and multiplying by zn.

3. Equating both sides and solving for A(z).

Example 3.

(3) bn =

{
1, n = 0
2an−1 + (n− 1) n ≥ 1.

The first terms of bn are,

(bn)n≥0 = 1, 2, 5, 12, 27, 58, 121, . . .
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So we are interested in finding an expression for the generating function
B(z) of the sequence bn,

B(z) =
∑
n≥0

bnz
n.

So we have,

(4) bn+1 = 2bn + n.

Summing the left-hand of (4) side over all n ≥ 0 and multpilying by zn gives∑
n≥0

bn+1z
n =

1

z

∑
n≥0

bn+1z
n+1 =

1

z
(B(z)− 1).

The right-hand side of (4) gives,∑
n≥0

2bnz
n +

∑
n≥0

nzn = 2B(z) +
z

(1− z)2
.

Now we are left with,

1

z
(B(z)− 1) = 2B(z) +

z

(1− z)2
.

Solving for B(z) yields the desired generating function,

B(z) =
1− 2z + 2z2

(1− 2z)(1− z)2
.

Even though this expression does not seem to give much information about the
sequence, a little manipulation of B(z) gives a nice result. The idea is to de-
compose B(z) in partial fraction,

(5) B(z) =
1− 2z + 2z2

(1− 2z)(1− z)2
=

A

(1− 2z)
+

B

(1− z)
+

C

(1− z)2
.

Multiplying both sides of (5) by (1− z)2 and replacing z=1 leads to,

−1 = C.

We can do the same thing by multiplying with (1− 2z) and find that,

2 = A.

And
B = 0.

Finally we get,

B(z) =
2

(1− 2z)
+

(−1)
(1− z)2

.

Extracting an exact formlua for bn from the new generating is an easy task
and we find that,

bn = [zn]
2

(1− 2z)
+

(−1)
(1− z)2

= 2n+1 − n− 1.
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1.2 Operations on Ordinary Generating Functions
An important advantage of generating functions in variable zn which are called
Ordinary generating functions is that they behave nicely with basic opera-
tions. For instance,

∑
n≥0

anz
n +

∑
n≥0

bnz
n =

∑
n≥0

(an + bn)z
n (Disjoint union)

(
∑
n≥0

anz
n)(
∑
n≥0

bnz
n) =

∑
n≥0

(

n∑
k=0

akbn−k)z
n (Cauchy product)

d

dz

∑
n≥0

anz
n =

∑
n≥1

nanz
n−1 (Differentiation)

A very useful generating function is the binomial expansion. We recall the
result, which works for any positive integer k, but the result can be extended
to non-integer values,

(1 + z)k =

n∑
i=0

(
n

i

)
zi =

∑
i≥0

(
n

i

)
zi

1.3 Examples of identities
Example 4. Show that,

n∑
i=0

(
a

i

)(
b

n− i

)
=

(
a+ b

n

)
.

At first sight this identity is not obvious even though a combinatorial meaning
can be given to it. However, it can be shown easily using generating functions.

We only need to recognize the fact
n∑

i=0

(
a
i

)(
b

n−i
)
seems like a product of generating

functions in ??.

[zn](1 + z)a(1 + z)b =

n∑
i=0

(
a

i

)(
b

n− i

)
But it is also,

(1 + z)a(1 + z)b = (1 + z)a+b.

Therefore,

[zn](1 + z)a+b =

(
a+ b

n

)
.

It is a very simple example of how combinatorial identities can be shown
using generating functions. However, much more complicated ones can shown.
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Exercice 1. Show that,
n∑

i=0

i

(
n

i

)
= n2n−1

(Hint: Use Exponential generating functions, the basic operations are given in
the Appendix 4)

Exercice 2. Show that,

n∑
i=0

(
x+ i

i

)
=

(
x+ n+ 1

n

)

2 Analysis of Quicksort

Algorithm 1 Quicksort
1: function Quicksort(T ,s,e)
2: . T is the array to be sorted and s, e the start and end indeces
3:
4: if e ≥ s then
5: v := T [e]
6: i := s− 1
7: j := e

8: while i ≥ T [i] do
9: while v ≤ T [i] do

10: i := i+ 1

11: while v ≥ T [j] do
12: j := j − 1

13: tmp := T [i], T [i] := T [j], T [j] := tmp

14: T [j] := T [i], T [i] := T [e], T [e] := tmp
15: Quicksort(T ,e,i− 1)
16: Quicksort(T ,i+ 1,s)

This algorithm was invented by C. A. R. Hoare in 1961 [3] who did one the
first analysis of algorithms. More details can be found in [1].

The algorithm partitions the array into two parts, following the last element
of the array T [e]. The first partition will contain all elements smaller than T [e]
and the second all elements that are larger than T [e].Places T [e] in its right place
and finally, the algorithm is called back on the two partitions independently.

The algorithm Quicksort(T,1,n) will sort an array of n elements, but we need
an additional element T [0] that has to be smaller than all others.

Exercice 3. Let T = [−1, 2, 4, 3, 1], Compute Quicksort(T,1,4).

The average number of comparison made by Quicksort is

(6) cn =

 0, n = 0

(n+ 1) + 1
n

n∑
i=1

(ci−1 + cn−i) n ≥ 1.
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Here we consider that the elements of the table form a uniform random
permutation. However other distribution models can be studied too in the
same way.

Multiplying both side of 6 by n we get the following,

(7) ncn = n(n+ 1) + 2

n∑
i=1

ci−1.

We want to find the generating function of cn

C(z) =
∑
n≥0

cnz
n.

We can use the same approach as before, after summing for all n ≥ 0 and
multiplying by zn we get,

(8)
∑
n≥0

ncnz
n =

∑
n≥0

n(n+ 1)zn + 2
∑
n≥0

n∑
i=1

ci−1z
n.

The left-hand side of (8) is equal to

zC ′(z)

For the right-hand side of (8) we notice that
∑
n≥0

n∑
i=1

ci−1z
n is a Cauchy

product of 1
(1−z) and zC(z). Therefore,

∑
n≥0

n∑
i=1

ci−1z
n =

z

(1− z)
C(z)

Exercice 4. Show that, ∑
n≥1

n(n+ 1)zn =
2z

(1− z)3
.

Finaly the right-hand side gives,

2z

(1− z)3
+ 2

z

(1− z)
C(z)

Then we have zC ′(z) = 2z
(1−z)3 + 2 1

(1−z)zC(z). Which simplifies to

(9) C ′(z) =
2

(1− z)3
+ 2

1

(1− z)
C(z).

The differential equation can be solved in simple steps. a detailed proof is
given in the Appendix(4),

C(z) =
2

(1− z)2
ln

1

(1− z)
.

7



Theorem 1. The average number of comparisons in Quicksort is

cn ∼ n lnn.

Proof. To see this we only need to extract coefficients from C(z) and take the
first order asymptotics of Hn.

[zn]C(z) =2

n∑
i=1

(
1

i
)(n− i+ 1)

=2(nHn+1 − n+Hn+1)

=2((n+ 1)Hn+1 − n).

Where Hn =
n∑

i=1

1
i is the sequence of Harmonic numbers. The asymptotics

of Hn can be computed via the theory of Analytic Combinatorics exposed in
[2]. and we have,

Hn ∼ lnn+ γ

3 Glimpse to singularity analysis
In the next example we will show how generating functions can give surprisingly
easy method to solve seemingly complicated problems. This time we will use
Exponential generating function.

Example 5. 2-regular graphs. A 2-regular graph is a graph in which each
vertex has degree 2. We want to count 2-regular graphs on n vertices. The
vertices are labelled, this explains why it is more convenient to use Exponential
generating functions. We want,

R(z) =
∑
n≥0

rn
zn

n!

Thinking of this problem we can see that these graphs are made of disjoint
undirected cycles. And the number of disjoint undirected cycles on n vertices is
(n−1)!

2 . Therefore we get,

D(z) =
∑
n≥3

(n− 1)!

2

zn

n!

=
1

2

∑
n≥3

zn

n

=
1

2

(
log

1

1− z
− z − z2

2

)
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D(z) is the EGF of the counting sequence of the graphs so finally,

R(z) =eD(z)

=
e

−z
2 −

z2

4

√
1− z

.

The theory of singularity analysis then tells us that expanding the numerator
around z = 1 gives,

R(z) =
e−

3
4

√
1− z

+O((1− z) 1
2 ).

And then,

rn ∼ n!
e−

3
4

√
πn

For the complete study see [2, p. 379]

4 Appendix
Solving the differential equation (9),
The homogenous equation has the form,

f ′(z)

f(z)
=

2

(1− z)
.

Which gives, f(z) = 1
(1−z)2 as an integration factor. Now,

((1− z)2C(z))′ =C ′(z)(1− z)2 − 2(1− z)C(z)

=(1− z)2(C ′(z)− 2
C(z)

(1− z)
) =

2

(1− z)
.

Operations on Exponential Generating Functions
As in the case of ordinary generating functions the exponential ones have also
simple forms for basic operations. For instance,

∑
n≥0

an
zn

n!
+
∑
n≥0

bn
zn

n!
=
∑
n≥0

(an + bn)
zn

n!
(Disjoint union)

(
∑
n≥0

an
zn

n!
)(
∑
n≥0

bn
zn

n!
) =

∑
n≥0

(

n∑
k=0

(
n

k

)
akbn−k)

zn

n!
(Cauchy product)

d

dz

∑
n≥0

an
zn

n!
=
∑
n≥1

an
zn−1

(n− 1)!
(Differentiation)
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