Graphs of Shortest Paths

Simon Dreyer, Antoine Genitrini and Mehdi Naima

¹Sorbonne Universite, CNRS, LIP6

June 3rd, 2025

Outline

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Sampling Algorithm

Graphs of sh. paths

GSPs
Asympt. Enum.
Uniform Sampling

General GSP

1 Introduction

Safe Places
Traffic Model
State of the Art

2 Contributions

Sampling Algorithm
Mean Distance vs Mean SP Length

- 3 Graphs of sh. paths
- 4 Increasing GSPs

Asympt. Enum. Uniform Sampling

6 General GSPs

Graphs of sh. paths

Introduction

Traffic Model

State of the Art

Contribution

Sampling Algorith

Mean Distance vs

Graphs of sh

Increasing

Asympt. Enum.

Uniform Sampling

General GSPS

Section 1. Introduction

Safe places in Graphs

Graphs of sh. paths

ntroduction
Safe Places
Traffic Model
State of the Art

Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh paths

Increasing GSPs

Asympt. Enum. Uniform Sampling

General GSI

 Find safe places in graphs when pandemic propagates on routes

Needed a simplistic traffic model

Assign a shortest path to each agent

What distribution to use? Simplest possible, all shortest paths are equally likely (uniform distribution)

Notations

Graphs of sh. paths

Safe Places
Traffic Model
State of the Art

Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

Increasing GSPs

Asympt. Enum.
Uniform Sampling

General GSPs

Given a Graph G = (V, E), denoting d(s, t) the distance from s to t:

- \mathbf{W}_{st} the set of all shortest paths (SP) (all have length d(s,t)) from s to t. $\sigma_s(t) = |\mathbf{W}_{st}|$
- $\mathbf{W}_{s\bullet}$ the set of all SP starting from s, $\mathbf{W}_{s\bullet} = \cup_{t \in V} \mathbf{W}_{st}$. $\sigma_{s\bullet} = |\mathbf{W}_{s\bullet}|$
- **W** the set of all SP in the graph $\mathbf{W} = \cup_{v \in V} \mathbf{W}_{v \bullet}$. $\sigma = |\mathbf{W}|$

Traffic Assignment

Each agent is assigned a shortest path W, such that $\mathbb{P}(W \in \mathbf{W}) = \frac{1}{\sigma}$

Literature: Sampling Shortest Paths

Graphs of sh.

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

GSPs
Asympt. Enum.
Uniform Sampling

General GSPs

- Most sampling procedures fix a source and target nodes
- Sampling SP is used in:
 - simulating traffic flow [DOW24]
 - studying the topology of a large network [DAHB+06]
 - assessing network damage [CPBV14]
- Two main procedures are mentioned:

Naive

- [DAHB⁺06; CPBV14; PFV10; ZZW⁺11; LLFS07; CT11]
- randomly selecting one shortest path from all possible paths

Random Weights

- [LBCX03; CM03; WVM10; FV07]
- edges assigned random weights $(1+\epsilon)$
- return the unique path left
- new sampling: new weights

Literature: Naive and Random Weights

Graphs of sh.

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithr
Mean Distance vs
Mean SP Length

Graphs of shapaths

Increasing GSPs

Asympt. Enum.
Uniform Sampling

General GSP:

- Problem: There can be an exponential number of paths
- Graph has 2n + 2 nodes
- There are 2^n SP from α and ω

- Family of graphs G_k . weights $\in [1 \frac{1}{n}, 1 + \frac{1}{n}]$
- $W_0 = \alpha \rightarrow 1 \rightarrow 2 \rightarrow \omega$
- $W_i = \alpha \rightarrow 3 \rightarrow x_i \rightarrow \omega$
- $\mathbb{P}(W_0) \stackrel{k=2}{=} \frac{737}{2016} \approx 0.36 \neq \frac{1}{3}$
- $\mathbb{P}(W_0) \stackrel{k \to +\infty}{\longrightarrow} \frac{1}{24} \neq 0$

Graphs of sh. paths

Introductio

Traffic Model

State of the A

Contributions

Sampling Algorit

Mean Distance vs

Cuanta of all

Increasing

Asympt. Enum.

Uniform Sampling

delleral dors

Section 2. Contributions

Sampling Algorithm

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions

Sampling Algorithm

Mean Distance vs

Mean SP Length

Graphs of sh. paths

Increasing GSPs

Asympt. Enum.
Uniform Sampling

General GSPs

Problem: source-target (s, t) uniform shortest path

Give a random generation algorithm satisfying $\forall W \in \mathbf{W}_{st}, \mathbb{P}(W) = 1/\sigma_s(t)$ and for all $W \notin \mathbf{W}_{st}, (W) = 0$.

- Two phase Algorithm:
 - Preprocessing: done only once
 - Sampling: any number of times
- Different implementations (linear, ordered, binary, alias)
- Optimal Time Complexity: **Alias**. O(m) for preprocessing and $O(\ell)$ for the sampling. m: number edges, ℓ is the length of the sampled path

Experimental Study

Graphs of sh.

Introduction
Safe Places
Traffic Model
State of the Art

Sampling Algorithm Mean Distance vs Mean SP Length

Graphs of sh.

GSPs
Asympt. Enum.

General GSI

Open Source Implementation in C: https://github.com/simon-dreyer/Shortest_path_sampling

	average pre-computation time					
in sec.	linear ordered binary alias					
40 # 20		u Al	11 11	<u></u>	444	
U.	pow ham par	mil vie	ast lin real-work	sla 4 d and synth.		oa_6 er_3 er_5 er_7

data	dir.	#nodes	#edges	ref.
power_grid	u	4.94K	6.59K	[Kun13]
hamster_full	u	2.43K	16.6K	[Kun13]
paris	d	9.52K	18.3K	[Boe17]
milan	d	12.9K	25.3K	[Boe17]
vienna	d	16.1K	35.7K	[Boe17]
astro_ph	u	18.8K	198K	[Kun13]
linux mail	d	26.9K	237K	[Kun13]
slashdot	d	51.1K	130K	[Kun13]
4	u	16.4K	28.7K	×
16	u	16.4K	31.7K	×
128	u	16.4K	32.5K	×
ba_4	u	16.4K	65.5K	×
ba_6	u	16.4K	98.3K	×
er_3	u	16.4K	238K	×
er_5	u	16.4K	398K	×
er_7	u	16.4K	558K	×

Mean Distance vs Mean Length of SP

Graphs of sh.

Introduction
Safe Places
Traffic Model
State of the Art

Sampling Algorithm Mean Distance vs Mean SP Length

Graphs of sh. paths

GSPs
Asympt. Enum.

Asympt. Enum.
Uniform Sampling

General GSPs

Two algorithms to sample shortest paths in a graph:

- 1 Iterate the following: Select unif. randomly a pair of nodes (s, t) and sample a unif. shortest path from s to t.
- 2 Iterate the following: Select s according to $\sigma_{v\bullet}$ and t according to $\sigma_s(v)$ and sample a unif. shortest path from s to t.

Question

What is the average length of a sampled shortest path?

Mean Distance vs Mean SP Length II

Graphs of sh.

Introduction
Safe Places
Traffic Model
State of the Art

Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

Increasing GSPs Asympt. Enum.

Uniform Sampling

General GSP

• Nomenclature in the literature seems a little ambiguous: NetworkX average shortest path length(G)

→ It is in fact the average distance

Average Length of SP does not seem to be studied in literature

Average distance (Algorithm 1):

$$d_G = rac{1}{n^2} \cdot \sum_{(s,t) \in V^2} d(s,t)$$

Average sh. path length (Algorithm 2):

$$\ell_G = \frac{1}{\sigma} \sum_{(s,t) \in V^2} \sigma_s(t) \cdot d(s,t)$$

4 paths (d=0), 8 paths (d=1), 8 paths (d=2)

In the 4-cycle graph C_4 , $d_{C_4}=1$ and $\ell_{C_4}=1.2$

Mean Distance vs Mean SP Length III

Graphs of sh.

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

Increasing GSPs

Asympt. Enum.
Uniform Sampling

General GSPs

Example: 2d Grid $n \times 2$

$$d_{G} = \frac{1}{n^{2}} \cdot \sum_{(s,t) \in V^{2}} d(s,t), \quad \ell_{G} = \frac{1}{\sigma} \sum_{(s,t) \in V^{2}} \sigma_{s}(t) \cdot d(s,t)$$

 $d_G \stackrel{n \to \infty}{=} \frac{n}{3}$, $\ell_G \stackrel{n \to \infty}{=} \frac{n}{2}$, Sampled paths are 3/2 longer using Algorithm 2.

Mean Distance vs Mean SP Length III

Graphs of sh.

Introduction Safe Places Traffic Model State of the Art

Contributions
Sampling Algorithm
Mean Distance vs

Mean SP Length

Graphs of sh. paths

Increasing GSPs

Uniform Sampling

General GSF

Example: 2d Grid $n \times 2$

$$d_{G} = \frac{1}{n^{2}} \cdot \sum_{(s,t) \in V^{2}} d(s,t), \quad \ell_{G} = \frac{1}{\sigma} \sum_{(s,t) \in V^{2}} \sigma_{s}(t) \cdot d(s,t)$$

 $d_G \stackrel{n \to \infty}{=} \frac{n}{3}$, $\ell_G \stackrel{n \to \infty}{=} \frac{n}{2}$, Sampled paths are 3/2 longer using Algorithm 2.

How different can these two measures (d_G and ℓ_G) be?

Arbitrary different in fact, for some graph families we can have $\ell_G/d_G o \infty$ or $\ell_G/d_G o 0$

Mean Distance vs Mean SP Length

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm

Mean Distance vs Mean SP Length

Graphs of sh.

Increasing GSPs

Uniform Sampling

General GSPs

When
$$m = n$$
, $\frac{\ell_G}{d_G} \stackrel{n \to \infty}{=} 0$

Rate of <i>m</i>	d_G	ℓ_{G}	$\frac{\ell_G}{d_G}$
$m < \sqrt{n}$	<u>5</u>	2	9 5
$m = \sqrt{n}$	$ \begin{array}{r} \frac{5}{4} \\ \frac{3}{2} \\ \frac{m^2}{4n} \end{array} $	2	4 3
$\sqrt{n} < m < n$	$\frac{m^2}{4n}$	2	$\frac{8n}{m^2}$
m = n	13 <i>n</i> 75	61 24	1525 104 <i>n</i>
$n < m < n\sqrt{n}$	<u>m</u>	$\frac{61}{24}$ $\frac{m^3}{24n^3}$	$\frac{m^2}{8n^3}$
$m = n\sqrt{n}$	$\frac{n\sqrt{n}}{3}$	$\frac{n\sqrt{n}}{27}$	$\frac{1}{9}$
$n\sqrt{n} < m$	<u>m</u>	<u>m</u>	1

Mean Distance vs Mean SP Length

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm

Mean Distance vs Mean SP Length

Mean SP Lengti

Increasing

GSPs

Uniform Sampling

General GSPs

When
$$m = \sqrt{n}$$
, $\frac{\ell_G}{d_G} \stackrel{n \to \infty}{=} \infty$

Rate of <i>m</i>	d_G	ℓ_{G}	$rac{\ell_G}{d_G}$
$m < \sqrt[3]{n}$	1	1	1
$m = \sqrt[3]{n}$	1	3	3
$\sqrt[3]{n} < m < \sqrt{n}$	1	2 <i>m</i> ³	$\frac{2m^3}{n}$
$m = \sqrt{n}$	3	$\frac{2\sqrt{n}}{3}$	$\frac{2\sqrt{n}}{9}$
$\sqrt{n} < m < n$	2 <i>m</i> ²	m	$\frac{n}{2m}$
m = n	14 <i>n</i> 27	n	$\frac{27}{14}$
n < m	<u>2m</u>	m	3

Graphs of sh. paths

Introductio

Traffic Model

State of the A

Contribution

Sampling Algorith

Mean Distance vs

Graphs of sh.

paths Increasing

GSPs

Uniform Sampling

General GSPs

Section 3. Graphs of sh. paths

Graphs of sh. paths (GSP)

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

Increasing GSPs

Uniform Sampling

General GSF

Given a weighted directed graph G = (V, E, W):

Definition: Graph of Shortest Paths from s Let s be a fixed node. The graph of shortest paths (GSP) from s is a directed graph $G_s = (V_s, E_s)$ defined as follows:

The set V_s corresponds to the nodes belonging to an edge from E_s which are the nodes accessible from s.

Remark: GSP is a directed acyclic graph that contains exactly one source.

Graphs of sh. paths (GSP) II

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

Increasing GSPs

Asympt. Enum.
Uniform Sampling

General GSPs

Prop: Any DAG containing one source is a GSP of some weighted directed graph. **Proof:** add weights to DAG. Let s denote the source of the DAG and m(s, w) the length of the longest path from s to w. The weight of the edge $u \rightarrow v$ denoted by W(u, v) is set to m(s, v) - d(s, u).

Graphs of sh. paths (GSP) III

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh.

Increasing GSPs

Asympt. Enum. Uniform Sampling

General GSPs

Suppose G is unweighted. The GSP from s is such that

- Contains one source s
- GSP is layered that is an edge (u, v) of the GSP goes from a node at distance k = d(s, u) to a node at distance k + 1 = d(s, v).

Consequence: GSP is bipartite and weakly connected

Notation: Profile is # nodes in each layer. On example (4, 3, 1)

Graphs of sh. paths

Introductio

Traffic Model

State of the Art

Contribution

Sampling Algorith

Mean Distance vs

Graphs of sh

Increasing GSPs

Asympt. Enum.

General GSPs

Section 4. Increasing GSPs

Increasing GSPs

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

Increasing GSPs

Asympt. Enum. Uniform Sampling

General GSPs

Definition: A GSP with n+1 nodes is a layered DAG with one source. Nodes are labelled from 0 to n, the node labelled by 0 is the source. Then let ℓ_i be the number of nodes in layer i. Nodes in layer i are labelled from $\ell_1 + \cdots + \ell_{i-1} + 1$ to $\ell_1 + \cdots + \ell_i$.

Questions:

- Asymptotic Enum.
- Uniform Generation
- Limiting shape

Notation: $\ell(v)$ denotes the layer number of node v

Increasing GSPs enum.

Graphs of sh. paths

ntroduction Safe Places Traffic Model State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

Increasing GSPs

Uniform Sampling

General GSP

For a given profile (ℓ_1, \ldots, ℓ_d) , the number of GSP with this profile as layer sizes is:

$$f(\ell_1,\ldots,\ell_d) = \prod_{k=0}^{d-1} \left(2^{\ell_k}-1\right)^{\ell_{k+1}}$$

Therefore the total number of GSP with n+1 nodes is:

$$d_n = \sum_{\substack{(\ell_1,\ldots,\ell_d) \in \mathbb{N}^d \ \ell_1+\cdots+\ell_{j=n}}} \prod_{k=0}^{d-1} \left(2^{\ell_k}-1
ight)^{\ell_{k+1}}.$$

$$(d_n)_{n\geq 0}=(1,1,2,6,26,158,1330,15486,249922,5604814,175056146,\dots)$$

Increasing GSP of size 4

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorith
Mean Distance vs
Mean SP Length

Graphs of spaths

Increasing GSPs

Asympt. Enum.
Uniform Sampling

General GSPs

Profile	GSP	Profile	GSP
			(1) (2)
(1, 1, 1)	0 > 1 > 2 > 3	(1,2)	3
(2,1)	2	(2,1)	2
	1)		
	0 3		0 2
(2,1)	2	(3)	

Study by profile

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

GSPs
Asympt. Enum.
Uniform Sampling

General GSPs

• Summing all contributions of profiles of width 2 (those having 2 layers). Profiles: $(1, n-1), (2, n-2), \dots (n-1, 1)$ gives $\sum_{k=1}^{n-1} (2^k - 1)^{n-k} = \Theta\left(2^{\frac{n^2}{4}}\right)$

- Take $k = \frac{n}{2}$ for lower bound and remove -1 in the sum for upper bound
- We also sum profiles of width 3

Definition: Let n = 2k and $r \in [0; k - 1]$. We call **dominant profile of** r**-kind** the profiles having the form

- (i, k-r, k+r-i) for $i \in [1; k+r]^1$.
- (i, k+r, k-r-i) for $i \in [1; k-r]$.

We denote $d_{2k}^{(r)}$ the number of GSPs having a dominant profile of r-kind.

Profiles of width 3

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorith
Mean Distance vs
Mean SP Length

Graphs of sh. paths

GSPs
Asympt. Enum.
Uniform Sampling

General GSPs

Lemma: Let r > 0. When $k \to +\infty$ we have $d_{2k}^{(r)} \ge 2k \cdot 2^{k^2 - r^2} (1 + o(1))$ **Prop:** Let n = 2k, when $k \to +\infty$, the following inequality holds:

$$d_n \geq S \cdot n \cdot 2^{\frac{n^2}{4}} \cdot (1 + o(1))$$
 with $S = \frac{1}{2} + \sum_{r=1}^{+\infty} \frac{1}{2^{r^2}}$.

The same study can be made when n is odd. **Prop:** Let n=2k+1, when $k\to +\infty$ we have:

$$d_n \geq S'.n.2^{rac{n^2}{4}}.(1+o(1)) \quad ext{with} \quad S' = \sum_{r=0}^{+\infty} rac{1}{2^{(r+rac{1}{2})^2}}$$

Consequence: Profiles of width 2 are negligeable compared to those of width 3.

Marked bicolored graphs

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

Asympt. Enum.

General GSPs

For $n \in \mathbb{N}$, let's denote B_n the set of bicolored graphs having n nodes. We'll call \mathcal{X} and \mathcal{Y} the two partitions. In the partition \mathcal{X} nodes are labelled from 1 to k and in the second nodes are labelled from k+1 to n. The partition \mathcal{X} contains one marked node. Edges go only between nodes of different colors. We denote by $b_n = |B_n|$.

Folding

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorith
Mean Distance vs
Mean SP Length

paths

Asympt. Enum.
Uniform Sampling

General GSPs

We give a construction $\mu: GSP \to MBG$ that transforms a GSP G with n+1 nodes into an MBG $\mu(G)$ with n nodes.

Unfolding

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contribution
Sampling Algorith
Mean Distance vs
Mean SP Length

Graphs of sh paths

GSPs
Asympt. Enum.
Uniform Sampling

General GSP:

We define the partial reverse of μ^{-1} : MBG
ightharpoonup GSP:

MBG Enumeration

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorith
Mean Distance vs
Mean SP Length

Graphs of sh. paths

GSPs
Asympt. Enum.

General GSPs

Prop: b_n is an upper bound on d_n . (folding is injective) We have $b_0 = 1$ (empty graph) and for $n \in \mathbb{N}^*$ the following holds:

$$b_n = \sum_{k=0}^n k.2^{k(n-k)}$$

Prop: Let $n \in \mathbb{N}^*$

$$b_n = \begin{cases} n.2^{\frac{n^2}{4}} \left(\frac{1}{2} + \sum_{r=1}^{\frac{n}{2}} \frac{1}{2^{r^2}} \right) & \text{when } n \text{ is even} \\ n.2^{\frac{n^2}{4}} \left(\sum_{r=0}^{\frac{n-1}{2}} \frac{1}{2^{(r+\frac{1}{2})^2}} \right) & \text{otherwise.} \end{cases}$$

Asymptotic Enumeration

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

GSPS
Asympt. Enum.
Uniform Sampling

General GSPs

From profiles of width 3:

$$d_n \geq \begin{cases} S \cdot n \cdot 2^{\frac{n^2}{4}} \cdot (1 + o(1)) & \text{with} \quad S = \frac{1}{2} + \sum_{r=1}^{+\infty} \frac{1}{2^{r^2}} & \text{when } n \text{ is even,} \\ S' \cdot n \cdot 2^{\frac{n^2}{4}} \cdot (1 + o(1)) & \text{with} \quad S' = \sum_{r=0}^{+\infty} \frac{1}{2^{(r+\frac{1}{2})^2}} & \text{otherwise.} \end{cases}$$

From marked bicolored graphs:

$$d_n \leq egin{dcases} n.2^{rac{n^2}{4}} \left(rac{1}{2} + \sum_{r=1}^{rac{n}{2}} rac{1}{2^{r^2}}
ight) & ext{when } n ext{ is even} \ n.2^{rac{n^2}{4}} \left(\sum_{r=0}^{rac{n-1}{2}} rac{1}{2^{(r+rac{1}{2})^2}}
ight) & ext{otherwise}. \end{cases}$$

Theorem: The number of GSPs with n+1 nodes when n grows $+\infty$ is equivalent to:

For even
$$n$$
: $d_n \sim n.2^{\frac{n^2}{4}}S$ with $S = \frac{1}{2} + \sum_{r=1}^{+\infty} \frac{1}{2^{r^2}}$

For odd *n*:
$$d_n \sim n.2^{\frac{n^2}{4}} S'$$
 with $S' = \sum_{r=0}^{+\infty} \frac{1}{2^{(r+\frac{1}{2})^2}}$

Canonical Unfolding

Graphs of sh. paths

Introduction Safe Places Traffic Model State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

GSPs
Asympt. Enum.
Uniform Sampling

General GSF

Definition: Let $M = (\mathcal{X}, \mathcal{Y}, E)$ be an MBG with $\mathcal{X} = [x_1, \dots, x_k]$ and $\mathcal{Y} = [y_1, \dots, y_{n-k}]$ and G its incomplete unfolding then M is a canonical unfolding if the mappings $\hat{\mathcal{X}} = [\ell(x_1), \dots, \ell(x_k)]$ and $\hat{\mathcal{Y}} = [\ell(y_1), \dots, \ell(y_{n-k})]$ are increasing either by 0 or 2.

 M_1 we have $\hat{\mathcal{X}}=[1,3]$ and $\hat{\mathcal{Y}}=[2,4]$ while for M_2 , $\hat{\mathcal{X}}=[1,3]$ and $\hat{\mathcal{Y}}=[4,2]$. Therefore, M_2 is not a canonical unfolding of G.

Figure: (up) a GSP G and (down) two MBG M_1 and M_2 successively having $\mathcal{X} = [1,2]$ and $\mathcal{Y} = [3,4]$. Applying μ^{-1} on M_1 and M_2 the right yields G and applying $\mu(G) = M_1$.

Uniform Sampling

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithr
Mean Distance vs
Mean SP Length

Graphs of sh. paths

GSPs
Asympt. Enum.
Uniform Sampling

ieneral GSPs

Prop: Every GSP *G* has a unique canonical unfolding.

Uniform Sampling with rejection:

- \bigcirc sample the partition size k according to the right distribution
- 2 sample a uniform bicolored graph M on with $|\mathcal{X}|=k$ and $|\mathcal{Y}|=n-k$
- 3 choose uniformly a node in $[1, \ldots, k]$ and mark it
- 4 do the incomplete unfolding of M
- **5** If M is canonical return $\mu^{-1}(M)$ else start the whole process again

Consequence: From asymptotic enum. the rejection rate tends to 0 as n grows

Graphs of sh. paths

Introductio

To Contact of

Traffic Model

Contributions

Sampling Algorith

Mean Distance vs

Graphs of s

Increasing

Asympt. Enum.

Uniform Sampling

General GSPs

Section 5. General GSPs

General GSPs

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

GSPs
Asympt. Enum.

General GSPs

Definition: Layered DAG with one source with n+1 nodes labelled from 0 to n. The source is labelled 0.

Also correponds to class of DAGs obtained from union DAGs that appear when taking all connected unweighted graphs of size n starting from node 0.

Let t_n be the number of general GSPs on n+1 nodes:

$$(t_n)_{n\geq 1}=1,1,3,19,195,3031,67263,2086099,89224635,5254054111,\ldots$$

The sequence t_n corresponds to A001832 in OEiS

General GSPs of size 4

Graphs of sh. paths

Introduction
Safe Places
Traffic Model

Contributions
Sampling Algorithm

Mean Distance v Mean SP Length

Graphs of s paths

Increasing GSPs

Asympt. Enum.
Uniform Sampling

General GSPs

General GSPs II

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Contributions
Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

GSPs Asympt. Enum. Uniform Samplin

General GSPs

• Bijection with connected bipartite graphs [Wil05] and links with graded posets [Kla69]

• **Prop:** For even *n*,

$$c'2^{\frac{n^2}{4}+\frac{3n}{2}}\frac{1}{\sqrt{n}} \leq t_n \leq c2^{\frac{n^2}{4}+\frac{3n}{2}}\frac{1}{\sqrt{n}},$$

with c' = 2.020036... and c = 2.020041...

- Lower bound : profiles of width 3. Upper bound : using bicolored graphs
- Conjecture: $t_n \stackrel{n \to \infty}{=} c2^{\frac{n^2}{4} + \frac{3n}{2}} \frac{1}{\sqrt{n}}$
- Uniform sampler: Sample uniformly and bicolored graph, if the resulting GSP is connected return it, else restart the whole process
- rejection rate if conjecture is true tends to 0 otherwise very small constant

Bibliography I

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Sampling Algorithm
Mean Distance vs
Mean SP Length

Graphs of sh. paths

Asympt. Enum.
Uniform Samplin

General GSPs

- [Boe17] Geoff Boeing. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, environment and urban systems, 65:126–139, 2017.
- [CM03] Aaron Clauset and Cristopher Moore. Traceroute sampling makes random graphs appear to have power law degree distributions. arXiv preprint cond-mat/0312674, 2003.
- [CPBV14] Fabio Ciulla, Nicola Perra, Andrea Baronchelli, and Alessandro Vespignani. Damage detection via shortest-path network sampling. Physical review E, 89(5):052816, 2014.
 - [CT11] Christophe Crespelle and Fabien Tarissan. Evaluation of a new method for measuring the internet degree distribution: Simulation results. Computer Communications, 34(5):635–648, 2011.
- [DAHB⁺06] Luca DallâAsta, Ignacio Alvarez-Hamelin, Alain Barrat, Alexei Vázquez, and Alessandro Vespignani. Exploring networks with traceroute-like probes: Theory and simulations. Theoretical Computer Science, 355(1):6–24, 2006.
 - [DOW24] Juan Dios Ortúzar and Luis G Willumsen. Modelling transport. John wiley & sons, 2024.
 - [FV07] Abraham D. Flaxman and Juan Vera. Bias reduction in traceroute sampling-towards a more accurate map of the internet. In International Workshop on Algorithms and Models for the Web-Graph, pages 1–15. Springer, 2007.
 - [Kla69] David A Klarner. The number of graded partially ordered sets. Journal of Combinatorial Theory, 6(1):12-19, 1969.
 - [Kun13] Jérôme Kunegis. Konect: the Koblenz network collection. In Proceedings of the 22nd international conference on world wide web, pages 1343–1350, 2013.
 - [LBCX03] Anukool Lakhina, John W. Byers, Mark Crovella, and Peng Xie. Sampling biases in ip topology measurements. In IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies, volume 1, pages 332–341. IEEE, 2003.
 - [LLFS07] Jérémie Leguay, Matthieu Latapy, Timur Friedman, and Kavé Salamatian. Describing and simulating internet routes. Computer Networks, 51(8):2067–2085, 2007.

Bibliography II

Graphs of sh. paths

Introduction
Safe Places
Traffic Model
State of the Art

Sampling Algorithm

Graphs of sh. paths

GSPS
Asympt. Enum.
Uniform Sampling

General GSPs

[PFV10] Márton Pósfai, Attila Fekete, and Gábor Vattay. Shortest-path sampling of dense homogeneous networks. Europhysics Letters, 89(1):18007, 2010.

[Wil05] Herbert S Wilf. generatingfunctionology. CRC press, 2005.

[WVM10] Huijuan Wang and Piet Van Mieghem. Sampling networks by the union of m shortest path trees. Computer Networks, 54(6):1042–1053, 2010.

[ZZW⁺11] Guo-Qing Zhang, Shi Zhou, Di Wang, Gang Yan, and Guo-Qiang Zhang. Enhancing network transmission capacity by efficiently allocating node capability. Physica A: Statistical Mechanics and its Applications, 390(2):387–391, 2011.

