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Safe places in Graphs

Graphs of sh.
paths .

® Find safe places in graphs
when pandemic . o
propagates on routes

Safe Places

® Needed a simplistic traffic ° ~ ek
model i .
—— Assign a shortest path to o
each agent

What distribution to use? Simplest possible, all shortest paths are equally
likely (uniform distribution)

L o
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Notations
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Given a Graph G = (V, E), denoting d(s, t) the distance from s to t:

® W, the set of all shortest paths (SP) (all have length d(s, t)) from s to
Traffic Model t O’S(t) = |W5t‘

* W,, the set of all SP starting from s, Wse = UrcyWst. 050 = |Wo,|
® W the set of all SP in the graph W = U,cyW,,. 0 = |W/|

1
Each agent is assigned a shortest path W, such that P(W € W) = >
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Literature: Sampling Shortest Paths

® Most sampling procedures fix a source and target nodes
e Sampling SP is used in:
® simulating traffic flow [DOW24]

® studying the topology of a large network [DAHB™06]
® assessing network damage [CPBV14]

® Two main procedures are mentioned:

Naive Random Weights

* [DAHB™06; CPBV14; PFV10; [LBCX03; CM03; WVM10; FV07]
ZZW*11; LLFS07; CT11]
® edges assigned random weights
® randomly selecting one shortest (1+¢€)
path from all possible paths ® return the unique path left

QIEP ® new sampling: new weights

[



Literature: Naive and Random Weights
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Family of graphs Gi. weights € [1 — %, 1+ %]

°* Wo=a—-1=22—>w

° There can be
. e Wi=a—=3—=x —w
an exponential number
N of paths o P(Wp) 'S BT ~036#1

® Graph has 2n + 2 nodes

® There are 2" SP from «
and w

o P(Wo) “Z5° L £0

X1
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Contributions

Section 2. Contributions




Sampling Algorithm

Graphs of sh.
paths

Give a random generation algorithm satisfying VW € W, P(W) = 1/04(t)
and for all W ¢ W, (W) =0.

Sampling Algorithm

® Two phase Algorithm:
® Preprocessing: done only once
® Sampling: any number of times
¢ Different implementations (linear, ordered, binary, alias)
® Optimal Time Complexity: Alias. O(m) for preprocessing and O(¢) for

the Sampling. m: number edges, £ is the length of the sampled path

w
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Sampling Algorithm

Experimental Study

Open Source Implementation in C: https://github.com/simon-dreyer/Shortest_path_sampling

bumvzkswi

average #operations on queries

40

20

#operations per unit length

N linear
B ordered
B binary
mmm alias

0
pow ham par mil vie ast lin sla 4 16 128 ba_4ba 6er 3er 5er 7
average pre-computation time
B linear
80 B ordered
60 | bi.nary
. alias

#time in sec.

ip

pow ham par mil

Gata G Fnodes Fedges el
power_gid | u 49K 659K  [Kunl3]
hamster_full | u 243K 166K [Kun13]
paris d 95K 183K [Boe17]
milan d 120K 253K [Boe17]
vienna d 161K 3BTK  [Boel7]
astro_ph U 188K 198K [Kun13)]
tinux_mail d 269K 237K [Kun1]
slashdot d 511K 130K [Kuni3]
T U 164K 287K x
16 U 164K 3LTK x
128 U 164K 325K x
ba_4 U 164K 655K x
ba_6 U 164K 983K x
3 U 164K 238K x
es U 164K 398K x
et U 164K 588K x

vie ast lin sla 4 16 128 ba_4ba 6er 3er 5er 7
real-world and synth. datasets

Query complexity of preprocessing and sampling on the different graphs


https://github.com/simon-dreyer/Shortest_path_sampling

Mean Distance vs Mean Length of SP
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® Two algorithms to sample shortest paths in a graph:
@ lterate the following: Select unif. randomly a pair of nodes (s, t) and
sample a unif. shortest path from s to t.
@ lterate the following: Select s according to o,e and t according to os(v)
and sample a unif. shortest path from s to t.

Mean Distance vs
Mean SP Length

What is the average length of a sampled shortest path?



Mean Distance vs Mean SP Length II

Graphs of sh.
paths ® Nomenclature in the literature seems a little ambiguous: NetworkX

average_shortest_path_length(G)
—
® Average Length of SP does not seem to be studied in literature

Average distance (Algorithm 1):

R 1 .
ek S de 020

(s,t)eV?2 I
Average sh. path length (Algorithm 2): ®_®
1 4 paths (d = 0), 8 paths (d =1), 8
be == Z os(t) - d(s, t) paths (d = 2)
(s,t)eV?
In the 4-cycle graph (4, dg, =1 and (¢, = 1.2
;—“p i2

w
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Mean Distance vs
Mean SP Length

Mean Distance vs Mean SP Length 11l

Example: 2d Grid n x 2

1
dc = % ’ z:(s,t)ev2 d(s, t)a le = s E Us(t) . d(s, t)

(s,t)eV?
X1 KXQ\ Xn
y wa I Yn
de "= 3, Lg e 5, Sampled paths are 3/2 longer using Algorithm 2.




Mean Distance vs Mean SP Length IlI

Graphs of sh.

paths Example: 2d Grid n x 2
1
de = 1 Ysnevedsit), le=—= 3 os(t)-d(s,t)
T (s,t)eVv?
X1 fx;\ Xn
Mean Distance vs y l} I Yn
) de "=° 3, Lg e 2, Sampled paths are 3/2 longer using Algorithm 2.

How different can these two measures (dg and /) be?

Arbitrary different in fact, for some graph families we can have ¢¢/d¢ — oo

or véc;/dG — 0




Mean Distance vs Mean SP Length
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Cyr——®
lg N2
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Mean Distance vs Mean SP Length
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—}
When m = /n, g—gnzoooo

Mean Distance vs

Ve Distance v Rate of m de | Yg ffé
m < /n 1 1
m=/n 1 3
In<m<yn| 1 |2 ]2
I RERE A
vn<m<n |2 | m | S
m=n 521 n =
n<m o m 3 .
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Section 3. Graphs of sh. paths
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Graphs of sh. paths (GSP)

Graphs of sh.

paths
Given a weighted directed graph
G=(V,E,W):
Definition: Graph of Shortest Paths from s
Let s be a fixed node. The graph of shortest
paths (GSP) from s is a directed graph
Gs = (Vs, Es) defined as follows:

Graphs of sh (’7‘/) € ES (”-/) € E and d(S,_j) = d(S7 ’)+W(’7J)
aths
. The set Vs corresponds to the nodes

belonging to an edge from Es which are the
nodes accessible from s.

Remark: GSP is a directed acyclic graph
that contains exactly one source.
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Graphs of sh. paths (GSP) Il

Prop: Any DAG containing one source is a
GSP of some weighted directed graph.
Proof: add weights to DAG. Let s denote
the source of the DAG and m(s, w) the
length of the longest path from s to w. The
weight of the edge u — v denoted by
W(u,v) is set to m(s, v) — d(s, u).

|-
w
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paths

Graphs of sh. paths (GSP) IlI

Suppose G is unweighted. The GSP from s
is such that:

® (Contains one source s

® GSP is layered that is an edge (u, v) of
the GSP goes from a node at distance
k = d(s, u) to a node at distance

k+1=d(s,v).
Consequence: GSP is bipartite and weakly
connected

Notation: Profile is # nodes in each

layer. On example (4,3,1)

w
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Increasing
GSPs

Section 4. Increasing GSPs



Increasing GSPs

Graphs of sh.

paths
Definition: A GSP with n+ 1 nodes is a
layered DAG with one source. Nodes are
labelled from 0 to n, the node labelled by 0 is
the source. Then let ¢; be the number of
nodes in layer i. Nodes in layer i are labelled
from ¥l 4+ -+li_1+1toly +---+4.
Questions:

® Asymptotic Enum.
Increasing

GSPs ® Uniform Generation

® Limiting shape

Notation: ¢(v) denotes the layer

number of node v
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Increasing

GSPs

Increasing GSPs enum.

For a given profile (¢1,...,£q), the number
of GSP with this profile as layer sizes is:
d—
F(lr,... la) =[] (2% — 1)
k=0

-

Therefore the total number of GSP with
n+ 1 nodes is:
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Increasing GSP of size 4

Profile GSP Profile GSP
@»@(%
(1,1,1) @"@ (1,2)
©
OO, oso
(2,1) @ (2., 1) o
o
0SS oo
(2,1) (3) e
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Study by profile

® Summing all contributions of profiles of width 2 (those having 2 layers). Profiles:

n2
(1,n—1),(2,n—2),...(n—1,1) gives >} (2* —1)"* = © (27)
® Take k = 5 for lower bound and remove —1 in the sum for upper bound
® We also sum profiles of width 3

Definition: Let n =2k and r € [0; k — 1]. We call dominant profile of r-kind the
profiles having the form

o (iyk—r k4r—i)foric[lk+r]"
® (i,k+r,k—r—i)forie[l; k—r].

We denote d2(;) the number of GSPs having a dominant profile of r-kind.

..........

liﬁe notation [a; b] stands for the set of integers from a to b.

rs
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Profiles of width 3

Lemma: Let r > 0. When k — 400 we have dé,:) >2k- 2"2_'2(1 + 0o(1))
Prop: Let n = 2k, when k — 400, the following inequality holds:

+o0o
2 _ 1 1
dn>5-n-2% . (140(1)) with 5:§+227.

r=1

The same study can be made when n is odd. Prop: Let n =2k + 1, when k — 400 we

have:
;o2 I
d,>S5'.n27 (1+0(1)) with S = ZO Py

Consequence: Profiles of width 2 are negligeable compared to those of width 3.



Marked bicolored graphs

Graphs of sh.
paths

For n € N, let's denote B, the set of
bicolored graphs having n nodes. We'll call X
and ) the two partitions. In the partition X
nodes are labelled from 1 to k and in the
second nodes are labelled from k + 1 to n.
The partition X' contains one marked node.
Edges go only between nodes of different
colors. We denote by b, = |B,|.

79

()
() ()

[N
[



Folding

Graphs of sh.
paths

We give a construction p : GSP — MBG that transforms a GSP G with n+ 1 nodes into
an MBG p(G) with n nodes.




Unfolding

Graphs of sh.
paths

We define the partial reverse of p~' : MBG — GSP:

Nlags
W
W

STC

—_—

n



MBG Enumeration

Graphs of sh.
paths
Prop: b, is an upper bound on d,. (folding is injective)
We have by = 1 (empty graph) and for n € N* the following holds:

by = Z k.2K(n=H)
k=0

Prop: Let n € N*
n? n
n2« (% +>72, 2%) when n is even
b, = 2 n—1 1
o2 5 .
n.27e (Zr:O 72“%)2) otherwise.

[N
[



Asymptotic Enumeration

From profiles of width 3:

Graphs of sh.
paths 5
S-n-2% . (1+0(1)) with S=1+3"" 57 When nis even,

d, > 2
$'.n2% (14 0(1)) with §'=>"% (,:1)2 otherwise.
2 2

From marked bicolored graphs:

n2
n27« (2 + Z %) when n is even

W<{ 1
n.2s ( 2o “*75)2) otherwise.

Theorem: The number of GSPs with n+ 1 nodes when n grows 400 is equivalent to
+o0 1

2 1
For even n: d, ~n2+$S with S = 5 >
r=1

n? .
Forodd n: dy~n27%S"  with &' = Z S(r+1)2

\
|

o
w
o



Canonical Unfolding
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Definition: Let M = (X, Y, E) be an MBG
with X = [x1,...,x] and YV = [y1, ..., Yn—«k]
and G its incomplete unfolding then M is a
canonical unfolding if the mappings
X =[l(x), ..., 0(x)] and
Y =[l(n),...,4(y.«)] are increasing either
by 0 or 2.

M; we have X = [1,3] and ) = [2,4] while
for Mo, X =[1,3] and Y = [4,2]. Therefore,
My is not a canonical unfolding of G.

05400.40,
02601010
Figure: (up) a GSP G and (down) two
MBG M; and M, succsessively having
X =[1,2] and Y = [3,4]. Applying !
on M; and M, the right yields G and
applying p(G) = M.



Uniform Sampling
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Prop: Every GSP G has a unique canonical unfolding.

Uniform Sampling with rejection:
@ sample the partition size k according to the right distribution
@ sample a uniform bicolored graph M on with |X| =k and |Y| =n—k
© choose uniformly a node in [1,..., k] and mark it
@ do the incomplete unfolding of M
® If M is canonical return ;1 ~'(M) else start the whole process again

Consequence: From asymptotic enum. the rejection rate tends to 0 as n grows

Uniform Sampling
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General GSPs

Section 5. General GSPs



General GSPs
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Definition: Layered DAG with one source with n+ 1 nodes labelled from 0 to n. The
source is labelled 0.

Also correponds to class of DAGs obtained from union DAGs that appear when taking all
connected unweighted graphs of size n starting from node 0.

Let t, be the number of general GSPs on n+ 1 nodes:

(tn)n>1 = 1,1,3,19,195,3031, 67263, 2086099, 89224635, 5254054111, . ..
The sequence t, corresponds to A001832 in OEiS

General GSPs
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General GSPs

General GSPs of size 4

Profile GSP Profile GSP @
s | @O | un @*@%
s | @D | un @@(8
s | @00 | un @
s | D | oy @
P~
s | DD | oy | T0O
o0
o | ©GG0 | o | 0
o ®‘%\ © |, @g@
@1 ®\@ © (2.1) CK@/rCD
(2.1) ®\ (1) CKCD/'
oL
3) €°
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General GSPs

General GSPs I

Bijection with connected bipartite graphs [Wil05] and links with graded posets [Kla69]

Prop: For even n,
30 1 3 1
2Tt <, < 2%t —

N
with ¢’ = 2.020036... and ¢ = 2.020041...

)

S

Lower bound : profiles of width 3. Upper bound : using bicolored graphs

2
. n—oo nZ , 3n
Conjecture: t, = c2+72 %

n
Uniform sampler : Sample uniformly and bicolored graph, if the resulting GSP is
connected return it, else restart the whole process

rejection rate if conjecture is true tends to O otherwise very small constant
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