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Alois Panholzer Technische Universität Wien

Vlady Ravelomanana Université de Paris
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Introduction



Tree structures

Tree structures are used as abstract data type to represent hierarchical relations

between information that it contains. Tree structures appears extensively in computer

science:

• In compilation abstract syntax trees

represent the abstract syntactic

structure of a source code written in a

programming language.

• In computational linguistics, a parse

tree represents the syntactic structure

of a string according to some

context-free grammar.

• Markup languages such as XML that

have underlying tree structures that

can be used and processed

subsequently by the Document Object

Model.

• Lambda terms in lambda calculus are

enriched tree structures.
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Tree structures

Tree structures also appear in a many other domains:

• In biology and phylogenetics to

represent the evolutionary relationship

among species. [Fel03, Ste16]

• Simple models for epidemics. [Moo74]

• In philology to construct the family

tree (stemma) of preserved copies of

ancient manuscript. [NH82]
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Increasing trees

• There are different varieties of trees (labelled, plane, rooted).

• Increasing trees have interesting properties.

Increasing trees have labellings that are increasing along their branches. They are used

in:

• Analysis of permutations and data

structures like binary search trees

using increasing binary trees.

[Drm09, Mah92, FGM+06]

• Trees of epidemic spreading and

manuscript reconstruction are also

increasing trees.

• Study the number of executions of a

parallel process and their

synchronisations. This leads to

repeated labellings. [BGP16, BGR17]
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Different approaches

In order to study these trees several mathematical models have been introduced

In probability theory:

Make a tree grow according to some

probability distribution.

Examples

• Galton-Watson trees to study

extinction of family names.

• Yule trees to study speciation in

phylogenetic trees.

• Binary search trees for the analysis of

data structures.

In combinatorics:

Describe all trees that belong to a certain

class of trees and classify them according

to their size. Then, count all trees of a

fixed size.

Examples

• Simply generated trees for arithmetic

expressions.

• Classical increasing trees for the

analysis of data structures.

Both approaches are complementary. It is possible to study random trees and derive

similar type of results.

5



Different approaches

In order to study these trees several mathematical models have been introduced

In probability theory:

Make a tree grow according to some

probability distribution.

Examples

• Galton-Watson trees to study

extinction of family names.

• Yule trees to study speciation in

phylogenetic trees.

• Binary search trees for the analysis of

data structures.

In combinatorics:

Describe all trees that belong to a certain

class of trees and classify them according

to their size. Then, count all trees of a

fixed size.

Examples

• Simply generated trees for arithmetic

expressions.

• Classical increasing trees for the

analysis of data structures.

Both approaches are complementary. It is possible to study random trees and derive

similar type of results.

5



Different approaches

In order to study these trees several mathematical models have been introduced

In probability theory:

Make a tree grow according to some

probability distribution.

Examples

• Galton-Watson trees to study

extinction of family names.

• Yule trees to study speciation in

phylogenetic trees.

• Binary search trees for the analysis of

data structures.

In combinatorics:

Describe all trees that belong to a certain

class of trees and classify them according

to their size. Then, count all trees of a

fixed size.

Examples

• Simply generated trees for arithmetic

expressions.

• Classical increasing trees for the

analysis of data structures.

Both approaches are complementary. It is possible to study random trees and derive

similar type of results.

5



Different approaches

In order to study these trees several mathematical models have been introduced

In probability theory:

Make a tree grow according to some

probability distribution.

Examples

• Galton-Watson trees to study

extinction of family names.

• Yule trees to study speciation in

phylogenetic trees.

• Binary search trees for the analysis of

data structures.

In combinatorics:

Describe all trees that belong to a certain

class of trees and classify them according

to their size. Then, count all trees of a

fixed size.

Examples

• Simply generated trees for arithmetic

expressions.

• Classical increasing trees for the

analysis of data structures.

Both approaches are complementary. It is possible to study random trees and derive

similar type of results.

5



Different approaches

In order to study these trees several mathematical models have been introduced

In probability theory:

Make a tree grow according to some

probability distribution.

Examples

• Galton-Watson trees to study

extinction of family names.

• Yule trees to study speciation in

phylogenetic trees.

• Binary search trees for the analysis of

data structures.

In combinatorics:

Describe all trees that belong to a certain

class of trees and classify them according

to their size. Then, count all trees of a

fixed size.

Examples

• Simply generated trees for arithmetic

expressions.

• Classical increasing trees for the

analysis of data structures.

Both approaches are complementary. It is possible to study random trees and derive

similar type of results.

5



Different approaches

In order to study these trees several mathematical models have been introduced

In probability theory:

Make a tree grow according to some

probability distribution.

Examples

• Galton-Watson trees to study

extinction of family names.

• Yule trees to study speciation in

phylogenetic trees.

• Binary search trees for the analysis of

data structures.

In combinatorics:

Describe all trees that belong to a certain

class of trees and classify them according

to their size. Then, count all trees of a

fixed size.

Examples

• Simply generated trees for arithmetic

expressions.

• Classical increasing trees for the

analysis of data structures.

Both approaches are complementary. It is possible to study random trees and derive

similar type of results.

5



Analytic combinatorics



Analytic combinatorics

Definition

A combinatorial class is a countable set of structures (with a notion of size defined

on them) where the number of elements of any given size is finite.

Framework to analyse properties of large random structures belonging to specifiable

combinatorial classes

• Symbolic method developed in [FS09] is a grammar
used to define (specify) combinatorial classes:

1. Elementary constructions are the neutral class and the

atomic class.

2. Basic operators such that the disjoint union, Cartesian

product and sequences.

3. Combining (1) and (2) =⇒ create complex classes.

• Generating functions are functions with a formal

variable that encompass information about the number

of objects of each size of the combinatorial class.

Result

Operations in the symbolic method translates directly to operations on generating

functions.

• Theorems for automatic asymptotic estimates.

• Theorems for the shape of large random structures.
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Ordinary generating functions

For a combinatorial class C we define its ordinary generating function (OGF) to be

C(z) =
∞∑
n=0

Cnzn where Cn counts the number of objects in C of size n.

Symbolic method of ordinary generating functions [FS09]

Operation Notation Description OGF

Neutral class ε Class consisting of single object of size 0 1

Atomic class Z Class consisting of single object of size 1 z

Disjoint Union F + G Disjoint of objects from F and G F (z) + G(z)

Cartesian product F × G Ordered pairs of objects one from F and one from G F (z) · G(z)

Sequence SeqF Sequences of objects from F
1

1− F (z)

Substitution F ◦ G Substitute elements of G for atoms of F F (G(z))

Erasing i atoms E iF Erase i atoms from objects of F
F (i)(z)

i!
. . .

Example: Words over the 3 letter alphabet {•, •, •} For example w = •••••••••••• ∈ W

W = Seq (Z• + Z• + Z•)
Symbolic method

=⇒ W (z) =
1

1− 3z

The terms are then obtained by coefficient extraction [zn]W (z)

W (z) = 1 + 3z + 9z2 + 27z3 + 81z4 + 243z5 + 729z6 + 2187z7 + 6561z8 + 19683z9 + 59049z10 + . . .
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Plane simple trees varieties

Plane simple trees are rooted unlabelled trees

Definition (Weighted degree function)

For a class of trees with φi colours for

i-ary nodes, we define its degree function

to be φ(z) =
∑

i≥0 φiz
i .

For example

φ(z) = 1 + z2 + 10z3 + 2z5.

Corresponds to a class of trees having:

• One type of leaves.

• Binary nodes of 1 colour.

• Ternary nodes of 10 colours.

• 5-ary nodes of 2 colours.

Given a weighted degree function φ(z)

such that φ0 > 0, the variety of plane

simple trees parameterised by φ is specified

in world of OGF by,

T = Z × (φ ◦ T )

which gives,

T (z) = z φ(T (z))

Example:

Binary trees are parameterised by

φ(z) = 1 + 2z + z2, then,

B(z) = zφ(B(z))

Solves to,

B(z) = −1 +
(1−
√

1−4 z)
2 z

8
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Binary trees are parameterised by

φ(z) = 1 + 2z + z2, then,

B(z) = zφ(B(z))

Solves to,

B(z) = −1 +
(1−
√

1−4 z)
2 z

In plane simple trees nodes can be decorated but do not bear labels

8



Exponential generating functions

The exponential generating function (EGF) to be C(z) =
∞∑
n=0

Cn
zn

n!
where Cn counts

the number of objects in C of size n.

Symbolic method of exponential generating functions [FS09]

Operation Notation Description EGF

Neutral class ε Class consisting of single object of size 0 1

Atomic class Z Class consisting of single object of size 1 z

Disjoint Union F + G Disjoint of objects from F and G F (z) + G(z)

Labelled product F ? G well-labelled ordered pairs of objects one from F and one from G F (z) · G(z)

Sequence SeqF Sequences of objects from F
1

1− F (z)

Set SetF Set of objects from F exp(F (z))

. . .

Example: Ordered set partitions. [{2, 4, 5}, {1, 7}, {3, 6}] is an ordered partition of size 7.

B = Seq
(
Set≥1 (Z)

) symbolic method
=⇒ B(z) =

1

1− (exp(z)− 1)
=

1

2− exp(z)

The terms are then obtained by n![zn]B(z) and are called Ordered Bell numbers:

B(z) = 1z + 3z2 + 13z3 + 75z4 + 541z5 + 4683z6 + 47293z7 + 545835z8 + . . .

9
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Greene operator and increasing trees

• Labelled structures are naturally specified with EGF since each atom bears an

integer label. Then the normalisation zn

n!
insures the generating function to be

convergent and analytic methods apply.

• The term increasing trees classically refers to trees such that the labels are

strictly increasing along branches and have no label repetitions.[BFS92]

The boxed product (Greene operator) is defined in the EGF world. That is defined as

the label product with the additional constraint that the smallest left has to appear on

the left class B.

A = B� ? C → A(z) =

z∫
0

(∂tB(t)) · C(t)dt

Example: Increasing binary trees.

B = ε+Z� ? (B ? B)
symbolic method

=⇒ B(z) = 1 +

z∫
0

1 ·B2(t) dt

which solves to

B′(z) = B2(z),B(0) = 1 =⇒ B(z) =
1

1− z
Bn = n![zn]B(z) = n!.
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An evolution process

• Differenciations appear over periods of

times and can appear simultaneously

in different individuals.

• We are interested in the number of

living individuals.

• Differenciations are not necessarily

binary.

Can be modeled using trees such that

• Internal nodes bear integer labels

corresponding to the time of

differentiation (label repetitions are

allowed).

• The size of the tree is its number of

leaves.

• Nodes can have different arities.

• Branches are strictly increasing (label

repetitions allowed).
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Parametrisable evolution process for
classes of strict monotonic Schröder
trees



Parameters of the evolution process

Definition (Coloured degree function)

For a class of trees with φi colours of

i-ary nodes, we define its coloured degree

function to be φ(z) =
∑

i≥1 φiz
i .

For example

φ(z) = z2 + 10z3 + 2z5.

Corresponds to a class of trees having:

• Binary nodes of 1 colour.

• Ternary nodes of 10 colours.

• 5-ary nodes of 2 colours.

A coloured degree function is a weighted

degree function where φ0 = 0.

Definition (Set of allowed repetitions)

The set r ⊂ N∗.

For example

r = {2, 3, 5}.

At each iteration step there are either 2, 3

or 5 repetitions of the same label (i.e the

number of leaves that evolves at each step

is constrained to lie in r).
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Evolution process for a variety of strict monotonic trees

The evolution process has two parameters a coloured degree function and a set of

allowed repetitions.

φ(z) = 2z2 + 2z3 and r = N∗

We have two colours of binary nodes (w,g) and two colours of ternary nodes (w,g).

Start at step 0 with a leaf; at each step i ≥ 1 do:

1. Choose a non-empty subset L of leaves of

the so-far built tree such that |L| ∈ r .

2. For each ` ∈ L choose an integer k > 1

such that φk > 0, and one of the

1 ≤ c ≤ φk colours.

3. Replace ` with an internal node labelled i

with the chosen colour and attach to it k

new leaves.
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Specification for the evolution process

• Increasing trees are usually specified in the framework of EGF with the use of

Greene operator.

• But it is not well suited for increasing trees with labels repetitions.

• A specification with OGF is more natural.

• Problem : the specification is then only formal and classical analytic methods do

not apply.

Let φ(z) a coloured degree function, r ⊂ N∗ a set of allowed repetitions and

m = min(r), then

B = Zm +
∑
i∈r

(
E i B

)
×
(
φi\(φ1Z)i

)
.

Which translates to,

B(z) = zm +
∑
i∈r

1

i!
B(i)(z)

(
φ(z)i − (φ1 z)i

)
.

B(i)(z)
i!

corresponds to erasing i leaves.
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Related works on increasing trees

• Increasing trees [BFS92].

No label repetitions and labellings

along branches are strictly increasing.

• Monotone functions on trees [PU83].

The maximum label is fixed and does

not depend on the size of the tree.

Labellings along branches are weakly

increasing and some labels may be

skipped.

• Strictly monotonic binary [BGGW20].

Specific case of strictly monotonic

trees with arity 2.

• Ranked Schröder trees [BGN19].

Two increasing labellings where all

arities are allowed.

• Families of monotonic trees

[BGNS20].

A general asymptotic for cases where

the number of repetitions allowed is

not bounded.

15
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Tree classes built with this evolution process

r φ(z) Name References

{1} zd Plane d-ary increasing [BFS92]

{1} z2

1−z
Increasing Schröder [BGN19]

N∗ z2 Strict monotonic binary [BGGW20]

N∗ z2

1−z
Strict monotonic Schröder [BGN19]

N∗ z
1−z

Strict monotonic general Schröder [BGMN20]

N∗ plane d-ary Monotonic d-ary trees [BGNS20]

{1, 2} z2 Supertrees [SDH+04]

{d} z2 Increasing binary with d label repetitions

Table 1: Some of examples of tree classes covered by the evolution process
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Three particular cases of the
evolution process



Increasing Schröder trees

Corresponds to the parameters φ(z) = z2

1−z
and r = {1}. Therefore, a single leaf can

evolve at each iteration step.

• Number of trees is n!
2

.

• Bijections with half permutations that preserves several

parameters. Number of internal nodes and the depth of

the leftmost leaf are related to the the number of cycles

in a permutation.

• Typical parameters are:

Mean Variance Limit law

Internal nodes n − ln n ln n Normal

Depth of the leftmost leaf ln n ln n Normal

Height of the tree Θ (ln n)

Degree of the root 2 e− 3 14 e− 4 e2 − 8 Modified Poisson

2-ary 3-ary 4-ary 5-ary 6-ary 7-ary 8-ary 9-ary 10-ary

EC (`)
n n − 2 ln n ln n 23

90
1

32
107

25200
47

86400
101

1587600
229

33868800
659

1005903360
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This tree with 8 leaves

Corresponds to the

permutation

(1, 4, 5)(2)(3)(6, 8)(7) it has

8 + 1− 5 = 4 internal nodes.
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Strict monotonic Schröder trees

Corresponds to the parameters φ(z) = z2

1−z
and r = N∗. Any number of repetitions is

allowed and the node degrees can be anything ≥ 2.

• Bijection with ordered set partitions (Ordered Bell

numbers) with the number of iteration steps

corresponding to the number of subsets in the

partitions.

• gn = Bn−1 =
n→∞

(n−1)!
2(ln 2)n

, (Bn is the n-th ordered Bell

number).

• Typical parameters are:

Mean Variance Limit law

Internal nodes n − ln 2 ln n

Distinct labels 1
2 ln 2

n (1−ln 2)

(2 ln 2)2 n Normal

Degree of the root 2 ln 2 + 1 −2 ln 2 (ln 2− 1) Shifted zero-truncated Poisson

Depth of the leftmost leaf ln n ln n Normal
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This tree with 8 leaves

Corresponds to the ordered

set partition

({3, 4}, {1, 5, 7}, {2, 6}).

The tree has 3 distinct labels

and the partition 3 subsets.
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Strict monotonic general Schröder trees

Corresponds to the parameters φ(z) = z
1−z

and r = N∗. Any number of repetitions is

allowed and the node degrees can be anything ≥ 1 including unary nodes.

• fn =
n→∞

c 2
(n−1)(n−2)

2 (n − 1)!.

• Typical parameters are:

Mean

Internal nodes Θ(n2)

Distinct labels Θ(n)

Unary nodes Θ(n2)

Depth of the leftmost leaf Θ(n)

Height Θ(n)

Remark

Unary nodes change significantly the number of trees and

its typical shape.
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Summary on the three models

Number of trees Number of internal nodes

Increasing Schröder trees n!/2 n − ln n

Strict monotonic Schröder trees (n − 1)!/(2 (ln 2)n) n − ln 2 ln n

Strict monotonic general trees c 2(n−1)(n−2)/2 (n − 1)! Θ(n2)

Remark

For all three models, it seems that typical large

trees have nodes that are mostly from the first

allowed arity, and little from the second allowed

arity while other arities appear very rarely.

1

2 2

3 3 3

4 5

5 6

7 6 7

9 7

10

14

10 8

12 9 9

13 10 12

14 14 11 14

12

13

14

11

12 12

13

14

6

7 9

8 11

9

10

11

13

12

13 14

14

9 4

14 5

6

7

12

14

This idea is developed in the next theorems in the form of asymptotic enumeration.
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Main theorem I

Condition

Let r ⊂ N∗ and m = min(r). Let φ(z) be a coloured degree function and such that

φ1 = 0, φ2 ≥ 1 and φn =
n→∞

O
(

n!
m!n/m nm+4

)
.

Let Bφ,rn be the number of trees of size n built via the evolution process

Theorem

Let φ(z) be a coloured degree function as in the condition, and r ⊂ N∗, with r 6= ∅.
Let m = min(r), then as n tends to infinity and is of the form n ≡ 0 mod m,

Br,φ
n ∼

n→∞
κ n!

(
φ2

ρ

)n

n
−1+

ρ φ3
φ2

2

− ρ f ′′(ρ)

f ′(ρ)
,

where κ is a constant that depends on φ(z) and r . Let f (z) =
∑
i∈r

z i

i!
, then ρ is the

smallest positive real of the equation f (z)− 1 = 0.
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Main theorem II

Condition

Let φ(z) be a coloured degree function and such that φ1 ≥ 1, φ2 ≥ 1 and

φn = O
(

n!
n5

)
.

Let Bφ,rn be the number of trees of size n built via the evolution process

Theorem

Let φ(z) be a coloured degree function as in the condition, let r ⊂ N∗, r 6= ∅, and

r 6= {1}, then as n tends to infinity,

Br,φ
n ∼

n→∞
κ (n − 1)!φn−1

2

n−1∏
k=1

 n−k∑
i=1,i∈r

φi−1
1

(n − k − 1

i − 1

) ,

where κ is a constant that depends on φ(z) and r .

The condition on φ2 can be relaxed and a similar result holds.

22



Main theorem II

Condition
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Applications



Increasing binary trees with d repetitions

• Bd be the class of increasing binary trees with d label repetitions at each

iteration step.

• At each iteration step exactly d leaves are chosen to expand (we start with a

single root that has d leaves).

• Specification with φ(z) = z2 and r = {d}.

d Asymptotics References

1 (n − 1)! EIS A000142

2 c2 n!
(
21/2

)−n
n−2 EIS A000680

3 c3 n!
(
3!1/3

)−n
n−3 EIS A014606

4 c4 n!
(
4!1/4

)−n
n−4 EIS A014608

Table 2: Asymptotic behaviour for Bd
n for

d ∈ {1, 2, 3, 4} when n ≡ 0 mod d . The

sequences in OEIS appear shifted (without

periodicities).
Simulation for n ∈ {10, 200} of Bd

n divided by

their expected asymptotic behaviour with

d ∈ {1, 2, 3, 4}.
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Evolution process for monotonic trees

Example: Monotonic binary trees

Take φ(z) to be unlabelled binary trees (or Catalan trees)

φ(z) = cat(z)− z = z2 + 2z3 + 5z4 + . . . and r = N∗

Start at step 0 with a leaf; at each step i ≥ 1 do:

1. Choose a non-empty subset L of leaves of

the so-far built tree such that |L| ∈ r .

2. For each ` ∈ L choose an integer k > 1

such that φk > 0, and one of the

1 ≤ c ≤ φk possible unlabelled trees with

k leaves.

3. Replace ` with the chosen unlabelled tree,

labelling all its internal nodes i .
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Increasing labellings of binary trees

As a result we propose new increasing labellings models on trees which allow label

repetitions:

Increasing Connected monotonic Strict monotonic Monotonic

Label repetitions no yes yes yes

Branches strictly increasing weakly increasing strictly increasing weakly increasing

Repetitions in the same subtree anywhere anywhere

• Using different values of φ and r we can specify and enumerate trees (counted by

their leaves) with the different increasing labellings.

• Theorem I applies to give the asymptotic behaviours.
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Comparison of binary trees increasing labellings

r φ(z) Asymptotics References

Increasing {1} z2 (n − 1)! [FS09], Theorem I

Connected monotonic {1} (cat(z)− z) c3 n! n Theorem I

Strict monotonic N∗ z2 c4 (n − 1)! ( 1
ln 2

)n n− ln 2 [BGGW20], Theorem I

Monotonic (weakly increasing) N∗ (cat(z)− z) c5 (n − 1)! ( 1
ln 2

)n nln 2 Theorem I

Table 3: Comparison of the asymptotic behaviour of labelled binary trees under different labelling

models.

Simulation for n ∈ {1, 100} of binary trees with different increasing labellings divided by their

expected asymptotic first order.
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Increasing labellings of Schröder trees

On Schröder trees the different increasing labellings give:

Increasing Connected monotonic Strict monotonic Monotonic

Label repetitions no yes yes yes

Branches strictly increasing weakly increasing strictly increasing weakly increasing

Repetitions in the same subtree anywhere anywhere
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Comparison of Schröder trees under different increasing labellings

r φ(z) Asymptotics References

Increasing Schröder trees {1} z2

1−z
1
2
n! [BGN19], Theorem I

C. M. Schröder trees {1} (S(z)− z) α n! n2 Theorem I

Strictly monotonic Schröder N∗ z2

1−z
1
2

(n − 1)! ( 1
ln 2

)n [BGN19], Theorem I

Monotonic Schröder N∗ (S(z)− z) κ(n − 1)! ( 1
ln 2

)n n2 ln 2 Theorem I

Table 4: Comparison of the asymptotic behaviour of families of labelled Schröder trees. S(z) is

the GF of Schröder trees.

Simulation for n ∈ {1, 100} of Schröder trees with different increasing labellings divided by their

expected asymptotic first order.
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Conclusion

• We studied a general parametrisable evolution process and showed general

asymptotic enumeration formulas.

• We also studied three cases separately with their typical parameters
Need
=⇒ Sample

uniformly and efficiently large trees.

• It raised questions about the average compaction rate of increasing trees.

Random generation: [BGN19, BGMN20]

• Uniform random generation for any φ

and r is hard in the general case (it

relies on the generation of integer

partitions).

• In the three cases presented

simplifications occur and trees of large

sizes (up to 1000 leaves) can be

uniformly sampled.
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Tree compaction: [BGGLN20]

• In the case of simple trees a uniform

tree with n nodes has an average

compaction rate of Θ
(

n√
ln n

)
.

[FSS90, BMLMN15]

• We developed a generic method to

compute the compaction rate of

increasing trees.

• We applied it on increasing binary

trees and get the average compaction

rate is Θ
(

n
ln n

)
and on recursive tree

to get O
(

n
ln n

)
.
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Perspectives and future works

Non-plane models

We studied plane trees but it would be interesting to make the same studies on

non-plane models.

Asymptotic enumeration

• Give the asymptotic behaviour of plane weakly increasing d-ary trees for d ≥ 3.

The case d = 2, the problem falls under Theorem I.

• More generally, find universal asymptotic theorems when there are no binary

nodes.

Tree compaction

Is to possible to show that trees belonging to classical increasing have an average

compaction size of Θ(n/ ln n)?

Increasing labellings

We obtained results on different increasing labellings of tree structures counted by

their number of leaves. What about trees in which we count all nodes as it is mostly

the case?
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Compaction of trees

• Another interesting equation related

to trees is their optimal representation

memory.

• The idea is that in a single tree, some

subtrees can be isomorphic and

therefore when compressing the tree

we can keep only one occurrence of a

repeated subtree and put pointers to

it.

Figure 1: (left) A binary tree of size 17. (right)

Its compacted version that has size 5.
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Compaction of trees

• The average compaction ration of a simple tree of size n is Θ(n/
√

ln n). [FSS90]

• The average compaction of binary increasing trees (equivalently binary search

trees) is known to be Θ(n/ ln n). [FGM+06]

• We found a generic method to obtain the average compaction rate of classes of

increasing trees based on a perturbed generating function.

• We applied our approach to rederive known results on binary increasing trees and

to obtain an upper bound on recursive trees O(n/ ln n). We have reasons to

believe that this bound is already sharp.
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Random generation

• We are interested in the uniform random generation of trees generated by the

parameterised evolution process (the parameters are φ(z) and r).

• For the general case, the speciation is not convergent (Boltzmann sampling can

not be applied).

• But we have a general recurrence that relies on integer partitions (Recursive

generation and unranking can be applied).

• But the complexity of the recursive generation corresponds to the one of

generating integer partitions.
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Improved algorithms for the three particular cases

• For some values of the parameters φ(z) and r , simplifications occur. This is the

case for the three models that we have presented.

Figure 2: Complexity of uniform samplers for the the three models of increasing Schröder

trees. (left) Time complexity of the sampling in milliseconds. (middle) Arithmetic operations

on big numbers complexity. (right) Arithmetic operations complexity.

• For the model of increasing Schröder trees (φ(z) = z/(1− z) and r = {1}) we

have an incremental process (no recursive generation or operations on big

numbers).
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Simulation of some parameters

Figure 3: The number of d-ary nodes and the number of iteration steps. (up left) Increasing

Schröder trees. (up right) Strict monotonic Schröder trees. (down) general monotonic Schröder

trees.

40


	Introduction
	Analytic combinatorics
	Parametrisable evolution process for classes of strict monotonic Schröder trees
	Three particular cases of the evolution process
	Applications
	Conclusion and future works
	References

